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A methodical guide for teachers of mathematics in

secondary school

Probability with Stochastic Graphs

Ireneusz Krech, Pavel Tlustý

1 Stochastic graphs vs. in-school probability theory teaching

process

1.1 Probability theory vs. intuition

Mathematical research and discovery is not only a result of one’s pure deduction, in-
ductive thinking and analogy-based reasoning but it is also a result of intuitive thinking
(see [31]). The formal approach towards mathematics is often opposed to the intuitive
approach. Abstractions and schemas are contrasted to “seeing” and “perception” of
general, important mathematical constructions and quantitative and space relations.
The inspiration and beginning of all discoveries as well as the point that gives certa-
inty in all kinds of reasoning and the author of new ideas, hypotheses or statements is
“obviousness”, “common sense”, that is – intuition.
For a long time Freudenthal used to replace the word ”intuition” with a phrase

”shaping of mathematical objects” (see [7]). He was doing so because of a wide range
of meanings that the word ”intuition” has in different languages. Freudenthal also wrote
(see [8]) that ”intuitions without concepts are empty, and concepts without intuitions
are blind”.
Stochastic intuitions are the ability of drawing judgments and beliefs of probabilistic

character without any conscious inference or even without perceiving the clues which
justify that belief or judgement. It is an ability allowing us to estimate properly the
probabilistic characteristics (the event’s probability, the expected value, distribution
or stochastic independence) of a given sample or population on the basis of incomplete
data about the sample and without any (conscious) reasoning or analysis, when the
estimation is based only on one’s experience or knowledge.
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1 TEACHING PROCESS

The intuitive conclusions are the ones which we consider obvious, we draw them
instantly, almost without thinking, without any reasoning, calculations or argumen-
tations on the basis of images, schemes or situation models that we have in memory.
Intuitive thinking is thinking about an abstract situation through its specific model
(see [24]).
In [35], [36] and [37] we can find the research of psychologists A. Tversky and D.

Kahneman which show that people do not have their probabilistic intuitions properly
developed. Humans were not provided even with basic probabilistic intuitions through
evolution.
Wrong probabilistic intuitions may be mathematically – based. They can be a re-

sult of lack of basic probabilistic, stochastic and combinatorial knowledge, but they can
also rise from its poor acquisition (a formalized lecture does not eliminate mistakes in
intuitive judgments). They can also have psychological background. A formal expla-
nation of the probability theory and statistics rules is not enough to eliminate those
“incorrect representations” in the process of probabilistic predicting, which is seen as
an important pre-decisive process by psychologists. The psychological research show
that in the process of predicting people do not use probabilistic arguments as much as
they use some rules, principles and strategies.
Tversky and Kahneman analyzed the basis of incorrect representations (incorrect

intuitions) in situations concerning probability estimations. They point out the diver-
gence between a subjective probability (i.e. estimation of probability given by a person
as his /her estimation of a chance of a given event to happen) and objective, norma-
tive probability resulting from a probabilistic model. They conducted the research as
a part of a bigger project concerning problems of teaching mathematics. They studied
the strategies used by people of different age and occupation while solving specific
stochastic (combinatorial, as a matter of fact) problems.
J. M. Shaughenessy’s research shows how vast is the role of personal contact between

a person and empiricism (drawing lots, working with statistical data, using the pre-
developped data, like the results of chance games, calculating frequencies, confronting
the a posteriori judgments with the ones made a priori) in developing correct stochastic
intuitions which appear in using heuristic strategies properly. The same research proves
that teaching probabilistic theory in too formalized way, apart from statistics, omitting
the empirical aspect of probabilistic issues and leaving out some classical paradoxes
like problems – stochastic surprises does, not remove incorrect intuitions. Tversky and
Kahneman emphasize the fact, that the same mistakes are made by ”stochastically
naive” students (the ones with no probabilistic experience) and adults – even ones who
had graduated from advanced but formalized stochastic courses. They find mistakes of
this kind made even by psychologists who have some knowledge of stochastics.

1.2 The functional teaching of mathematics

The idea of functional teaching is the basic strategy of didactically correct process of
teaching-learning mathematics. It may also be seen as a basic strategy of discovering
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1 TEACHING PROCESS

and creating mathematics by students (see [34]). It is a universal method, recommen-
ded in teaching different subjects, but in mathematics – because of an abstract and
operative character of mathematical notions – it has got a particular meaning. In func-
tional teaching we try to show mathematics from the notional side, not through the
algorithms and rules, as it was in the mechanistic approach. The definitions, rules,
reasoning or theorems are important, but they come later on, as a summary, a result
of different activities, discovering and using algorithms. According to the integral ap-
proach, mathematics should grow from reality, everyday situations. In the functional
method the objects and phenomena of the students’ environment do not have to be
the starting point of mathematical issues. Along with real situations we can use the
ones artificially created, using special teaching aids as well as purely abstract problems.
The care for precision and order, for clarity and understanding of mathematical issues,
for the compatibility of school and scientific notions is vital in the functional teaching.
The basis of the student’s mathematical activity is his awareness of where in the ”math
construction” he actually is at the moment. The overriding aim of this teaching me-
thod is the student gaining operative knowledge not on the basis of chaotic trials of
solving schematic problems or too ”casual work”, but through the student’s activities
carefully planned by the teacher. Only a well trained teacher, with a good knowledge
of methodology can plan the student’s work properly and lead the student to create se-
quent elements of mathematical knowledge, stressing ”mathematical activity, working
in mathematical world and its connection to reality, creative experience gathered by
the student gradually through solving problems open for creativity at his level” (see
[24]).
Through the functional teaching the constructive approach is accomplished. The

student creates his own knowledge integrated with various materials and tasks, on the
way of reach experience gathered in cooperation with the teacher and fellow students.
However, it is not about the superficial shaping of mathematical issues leading to the
answer to ”what is it” question. It is about active study of techniques and methods
that allow the student to solve ”the how do we construct” problems. We can find the
confirmation of this idea in Piaget’s Where does education aim in an extended and
supported by numerous research form. Piaget claims there that the basic condition of
the whole mind shaping process, which is especially important in the matters that lead
young learners to science, is using active methods of teaching. They allow the student
to spontaneously search for solutions and demand each truth that is to be discovered
to be rediscovered by the student and not only passed to him.

1.3 Probability versus stochastic games

Probability is present at every stage of teaching math teachers. But they often lack
proper tools of introducing probability at school. This situation is eve a bigger challenge
for primary and secondary school teachers. A real didactic suggestion is to introduce
stochastic issues on the grounds of chance games that are often followed by lots of
stochastic paradoxes. Solving different problems connected to those games leads to
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1 TEACHING PROCESS

proper understanding of elementary characteristics and acquiring correct intuitions.
Thanks to the paradoxes occurring in those games we can set didactic situations leading
to didactic reflections both tor students and teachers. Although probability is present
on the elementary and secondary stage of education of math teachers, mathematicians
often lack specific tools for teaching probability. Even well trained math teachers,
having broad knowledge of mathematics, usually need some additional professional
training connected to teaching probability. General rules of teaching which are usually
effective in other branches of mathematics are not necessarily as effective in teaching
probability theory. This situation is even a greater challenge for primary school teachers.
Although teachers do not need a very high level of mathematical knowledge, it is
necessary for them to understand the basic notions of mathematics they teach at schools
thoroughly, including deep understanding of relations and connections among different
aspects of that knowledge (see [25]). The additional elements that are important in the
professional teachers’ knowledge are described in [1]:

a) epistemology: a reflection on meanings of different notions, like different meanings
of probability (see [2]);

b) learning: foreseeing problems in the student’s learning, mistakes, obstacles and
strategies;

c) didactical means and methods: experience in good selection of examples and di-
dactic situations; ability to analyze the textbooks, curricula and other documents
critically; ability to adapt the statistics to different levels of education;

d) ability to engage the students in work and make them interested in what they
do; taking their beliefs and attitudes into consideration;

e) interactions: ability to create effective communication in the classroom and using
rating as a means of instructing students.

Classical paradoxes play a great role in teaching probability. Because of them we
can organize some didactical activities for the math teachers. The aim of these activities
is to provoke their reflection on the basic probabilistic notions. These activities also
help the teachers understand the students’ obstacles and difficulties in understanding
probability and they allow them to expand their own methodological and didactical
base.

Introduction of the stochastic graph into the probability teaching process is to
create, develop and shape those correct stochastic intuitions in a proper way. Simul-
taneously, we build this process by introducing a specific kind of chance experiments
and problems generated by them.
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1 TEACHING PROCESS

1.4 Penney’s game and a stochastic graph

There are two possible results of a coin toss. We shall code them in such a way:
o— the result will be heads and r -– the result will be tails. We shall call the r result a
success and the o result a failure. The result of k coin tosses, which is a k-arrangement
of {o, r} set we shall call a series of successes and failures, in short – a series of k length.
Let a and b be a defined series of successes and failures of k length. Repeating a

coin toss as many times as needed to get k trial result make the a or b series is called
waiting for the a or b series and marked as δa−b. Let us connect the events of:
A={waiting δa−b will finish with the a series},
B={waiting δa−b will finish with the b series}
with the δa−b chance experiment.
Let us mark the A event as {. . . a} and its probability as P (. . . a). The B event

shall be marked as {. . . b} and its probability as P (. . . b).
In a short article [27] Walter Penney discusses repeating a coin toss as many times

as needed to get three times heads or a heads-tails-heads series. Let δooo−oro mean the
described chance experiment. Penney suggests a lot game for two players. In the game
the δooo−oro experiment is conducted (it is not important who tosses the coin). One of
the players wins if the experiment ends up with the ooo result, and the other player
wins when the experiment ends with the oro result. The game described above we shall
call gooo−oro . The fact that the ooo and oro series are equally possible to happen would
suggest that the game is fair. But the probability that the waiting δooo−oro will end
up with the oro series is 0,6, while the probability that it will end up with the ooo
series is 0,4. Penney finds the probabilities on a way of particular reasoning (see [29],
p. 415) and he does not try to hide his being surprised by the fact that the game is
not fair. The oro series gives the player a bigger chance to win that the ooo one. This
is the interpretation of the results and the calculation on the real-life ground. So the
oro series is called better than the ooo one.
The problem of the fairness of chance games in case of waiting for other pairs of

series of heads and tails – those are called Penney’s games – the issues connected to
the paradox characteristics of the success-failure series in waiting for one of them to
occur, as well as the problem of time needed for such waiting (meant as a period of time
taken by the game, when time is measured with the number of coin tosses executed)
are called Penney’s problems in mathematical literature. Only in case of some pairs of
heads and tails series the Penney’s game is fair. Such series are called equally good.
Some of the results of research on the Penney’s problems are gathered in [11] mo-

nograph and [32], [13], [14], [15], [16], [17], [21] and [22] articles.
A tool for examining the countable probabilistic spaces for waitings for success-

failure series is a stochastic graph. Such a waiting for a series of successes and failures
is a chance experiment of a random number of stages.
The research on the probabilistic space for the waiting for one of many success-

failure series may be brought down to searching for the probabilities of reaching each
of the absorbing levels. Waiting for a success-failure series is often interpreted as a
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1 TEACHING PROCESS

Fig. 1: Stochastic graph - game grr−or

homogeneous Markov’s chain with the non-empty set of absorbing stages (see [19])
and it is suggested to use an iconic representation, along with the algebraical one,
that is a stochastic graph. Traditionally, such calculations are based on sequences and
differential equations. The essence of argumentations based on the stochastic graph is,
among others, a reduction of cycles and loops on the graph (we call them reductions of
the graph), or transition from a graph with unlimited number of passages to a limited-
passage graph (see [18]). It is a development of methods and tools suggested long ago
by Arthur Engel in [3], [4] and [5] (see also [20]).
The stages of a homogeneous Markov’s chain can be interpreted as points on a plain

and called knots. The knot that represents the beginning stage is called starting knot.
Each knot representing an absorbing stage is called edge knot. If the probability of
getting from a j stage to a k stage in one step is positive, then we connect those knots
with the oriented subsection of a line or curve and we mark that subsection k. We call
that subsection an arc. A graph constructed in such a way is an iconic representation
of a Markov’s chain.
At the beginning (before conducting the first stage of experiment) we place a pawn

in the starting knot of the graph. If a stage ends with the j result we move the pawn
along the j arc. The route of the pawn ends when it gets to an edge knot, that is at
the rim of the graph (see [23]). Picture 1 shows a stochastic graph being a board of the
gor−rr game.
If the pawn gets to the o knot at any stage of the game, it is certain (the probability

equals 1) that it will get to the knot (finish) or – that is the player waiting for this
series wins. For the pawn getting to the o knot the heads must be the result of first or
second toss, so the probability of this event is 0,5+0,25=0,75. The pawn gets to the rr
knot only if the first and second toss result with tails, then the other player wins, and
this happens with the probability of 0,25.
It is just one example of elementary, simple, but very elegant and making a great

impression reasoning based on a stochastic graph. There are lots of such examples can
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1 TEACHING PROCESS

be found in the quoted literature.
A natural generalization of discussed problems is replacing a coin toss with any

chance experiment having two possible results of non-equal probability (that is a Ber-
noulli’s trial) or a chance experiment having more than two results. Then we can discuss
the series of successes and failures or series of colors (flags).
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2 PROBABILITY SPACES

2 Probability in Probability Spaces Connected with Generalised

Penney’s Games

2.1 Discrete probability space and probabiliy in such a space

Let Ω be an arbitrary at least two-element and at most countable set. A non-negative
function p : Ω→ R which fulfils the condition

∑

ω∈Ω

p(ω) = 1,

is called a probability distribution on the set Ω.
Let Z = 2Ω. Define the function P on the set Z in the following way:

P (A) =



















0, if A = ∅,

p(ω), if A = {ω},
∑

ω∈A

p(ω), if A is a set with at least two elements,

It is not difficult to show that the function P fulfils the conditions of the axiomatic
definition of probability. Therefore the triple (Ω,Z, P ) is a probability space. It is called
a discrete probability space due to the cardinality of Ω.
The elements of the family Z are called events and the value of the function P for

a set A from the family Z is called the probability of event A. In order to define a
discrete probability space (Ω,Z, P ) it is necessary and sufficient to define a probability
distribution p on Ω. For this reason the pair (Ω, p) may also be called a descrete
probability space. In the following considerations the construction of a probability space
will be understood as the construction of a pair (Ω, p) in which Ω is a set containing
at least two elements and at most countable and p is a probability distribution on Ω.

2.2 Series of successes and failures, waiting for one of the two

series and its probability model

A random experiment with two possible results is called a Bernoulli trial or a trial if
the probabilities of these two results are positive. Let one of them be denoted by 1 and
called a success while the other is denoted by 0 and called a failure. Let us also denote
the probabilities of the success and failure by u and v respectively. Therefore 0 < u < 1
i u+ v = 1.
Every result of the experiment in which a particular Bernoulli trial is performed m

times (i.e. the result of a Bernoulli scheme of m trials) is called a series of successes and
failures. Number m is called the length of the series. A series of successes and failures
of length m will be represented as the m-arrangement of the set {0, 1}.
Let a and b be fixed series of successes and failures of the length m. The random

experiment of repeating the given trial until the results of the last m trials create series
a or series b is called waiting for one of the two series a or b and is denoted by da−b.
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2 PROBABILITY SPACES

Let Ωa−b be the set of such arrangements of {0, 1} with at most m terms in which
the last m terms create the series a or b, while neither the series a nor the series b is
created by any previous subsequence of consecutive m terms. The set Ωa−b consists of
all results of the random experiment da−b. For ω ∈ Ωa−b let j(ω) stand for the number
of the terms of the sequence ω which are equal to 1. Let the symbol |ω| denote the
length of the sequence ω, i.e. the number of its terms. Define the function pa−b on Ωa−b
by the following formula:

pa−b(ω) = u
j(ω) · v|ω|−j(ω) dla ω ∈ Ωa−b.

The function pa−b is a probability distribution on the set Ωa−b, so the pair (Ωa−b, pa−b)
is a probability space. It is called the probability model of the random experiment
da−b. The set Ωa−b is not finite but it is countable, the pair (Ωa−b, pa−b) is an infinite
(countable) probability space.

2.3 Some generalisation of Penney’s game onto a series of

successes and failures

Let a i b be fixed series of successes and failures of length m. Two players Ga and Gb
take part in the game. A particular Bernoulli trial is repeated until the results of last
m trials create the series a - in which case the player Ga wins - or the series b, which
means that the player Gb is a winner. Let us denote the game described above by ga−b.
It is a generalisation of the game suggested in 1969 by Walter Penney for u = 1

2
(see

W. Penney, Problem 95: Penney-Ante, Journal of Recreational Mathematics 7-1974,
p. 321).
In this game the random experiment da−b is performed, modelled by the probability

space (Ωa−b, pa−b). Let {a ≺ b} denote the event {the series a appears before the series
b} and let P (a ≺ b) stand for its probability.

2.4 Stochastic graph and probability space induced by it

While repeating the trials it is necessary to continuously control the result of the last m
trials in order to decide whether the game is over and who is the winner. This procedure
may be rationalised by interpreting the course of the experiment da−b as wandering of
a pawn on a stochastic graph. This interpretation refers to the idea of simulation of
the course of homogeneous Markov chains presented by Arthur Engel in [?].
Waiting for one of the series of successes and failures is a homogeneous Markov

chain. Let us consider the stochastic graph of this Markov chain. Let Ω∗ be the set
of all paths on this graph. To each path let us assign the product of numbers related
to the consecutive edges of this path. This product is called the weight of the path.
The function which to each path assigns its weight will be denoted by p∗. The function
p∗ is a probability distribution on Ω∗, so the pair (Ω∗, p∗) is a probability space. It is
called the space induced by the stochastic graph. All the subsequent calculations and
reasonings are conducted in such a probability space induced by a stochastic graph.
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2 PROBABILITY SPACES

If (Ωa−b, pa−b) is the probability model of the random experiment da−b defined above
and (Ω∗, p∗) is a probability space induced by the stochastic graph of the random
experiment da−b, then both spaces are isomorphic.
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3 Faster and equally fast series of successes and failures

Many factors have the influence on discovering and understanding mathematics, among
others intuition. The abstraction and the schematics in teaching mathematics are being
confronted with the vision and perceiving of general, essentially important mathema-
tical structures and the quantitative and spatial relations. Our common sense i.e. our
intuition is the author of any ideas, statements or hypotheses, it is he inspiration, the
beginning of any discovery and the clue delivering us confidence in reasoning o any
type. In the chapter the examples of stochastic paradoxes are presented. These pa-
radoxes are connected with special relations defined in a set of successes and failures
series, that standing against our intuitions appear to be a mean of the mathematical
activation.

Let u ∈ (0, 1), Ω0−1 = {0, 1}, p
u
0−1(1) = u and p

u
0−1(0) = 1 − u. Any experiment

which model (see [30]) is a probabilistic space (Ω0−1, p
u
0−1) is called Bernoulli trial

or briefly a trial and is denoted by δu0−1. The result denoted by number 1 is called
success, and the result denoted by number 0 is called failure. The number u is called
the probability of success.
In this work as a model of a probabilistic many-stage experiment we assume a

probabilistic space created with the following rules of stochastic tree:

(R1) the result of a many-stage random experiment δ as an element of the set Ωδ,
at the same time so-called as elementary event is represented by a sequence of
results of subsequent stages,

(R2) the probability distribution pδ on the set Ωδ we define by so-called multiply rule
that says: if ω ∈ Ωδ and ω = (a1, a2, . . . , an), than the pair (Ωk, pk) is the model
of the k-th stage and ak ∈ Ωk for k = 1, 2, . . . , n, so

pδ(ω) = p1(a1) · p2(a2) · . . . · pn(an).

Let m ∈ N1. Any result of m-times repeated Bernoulli trial e.i. any arrangement of
m out of 2 elements (of the set {0, 1}) is called the series of successes and failures and
is denoted by α. The number m is called the length of the series α.
Let α be any stated series of successes and failures of length m, where m ∈ N1.

Repeating the Bernoulli trial as long as results of m last trials will create the series α
is called the waiting for series α and is denoted by δuα. The number of trials done in an
experiment δuα is called the waiting time for series α. This number (mentioned before
beginning of awaiting) is a random variable in a probabilistic model of awaiting δuα and
it is denoted by T uα . The number E(T

u
α ) or expected value of the random variable T

u
α

- is an average waiting time for series α.

Definition. Let α1 and α2 be the series of successes and failures. If

E(T uα1) = E(T
u
α2
),
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so the series α1 and α2 are called equally fast at the point u and are denoted by

(α1♦α2)u.

Definition. Let α1 and α2 be the series of successes and failures. If

E(T uα1) < E(T
u
α2
),

so the series α1 is called faster than series α2 at the point u and is denoted by

(α1 ⊳ α2)u.

Let α1, α2 be the stated series of successes and failures of length m1 and m2 respec-
tively. Repeating the Bernoulli trial as long as:

– the results of m1 last trials create the series α1,

– or the results of m2 last trials create the series α2,

is called the waiting for one of 2 series of successes and failures and is denoted by
δuα1−α2 .
Let us introduce an event in a probabilistic model of the experiment δuα1−α2 :

Aj = {waiting δ
u
α1−α2

will be finished by series αj} = {. . . αj} for j = 1, 2.

The probability of the event Aj is denoted by P
u
α1−α2(. . . αj).

Definition. Let us consider the waiting δuα1−α2 . If

P uα1−α2(. . . α1)=P
u
α1−α2
(. . . α2),

so the series α1 and α2 are called equally well at the point u and are denoted by

(α1 ≈ α2)u.

Definition. Let us consider the waiting δuα1−α2 . If

P uα1−α2(. . . α1)>P
u
α1−α2(. . . α2),

so the series α1 is called better than series α2 at point u and is denoted by the symbol

(α1 ≫ α2)u.

The below examples illustrate paradoxical properties of relations:
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≈, ≫, ⊳ and ♦.

Example 1. Let us consider a series of successes and failures: 10, 01 and 00 for u = 1
2
.

Here we have
(10 ≈ 01) 1

2
∧ (01 ≈ 00) 1

2
∧ (10≫ 00) 1

2
.

Therefore the relation ≈ is not a transitive relation in a set of successes and failures
(at stated parameter u = 1

2
).

Example 2. Let us consider a series of successes and failures: 1101, 1011 and 0111 for
u = 1

2
. Here we have

(1101≫ 1011) 1
2
∧ (1011≫ 0111) 1

2
∧ (0111≫ 1101) 1

2
,

therefore in these three series, no one is best (e.i. better than any of the two other).
Relation ≫ in a set of successes and failures, is not a transitive relation.

Example 3. Let α1 = 0111, α2 = 1110. Here we have

(0111♦1110) 1
2
,

but in the waiting δ
1
2
0111−1110 there is

(0111≫ 1110) 1
2
.

From the fact that series are equally fast it doesn’t result that they are equally good.

At the same time we notice that E(T
1
2
0111) = E(T

1
2
0111) = 16 and the average waiting

time for one of these two series 0111 and 1110 or the average duration time of the

experiment δ
1
2
0111−1110 is 14.25.

Example 4. Let α1 = 1111, α2 = 1110. Here we have

(1110⊳ 1111) 1
2
,

however in the waiting δ
1
2
1111−1110 we have

(1110 ≈ 1111) 1
2
.

It doesn’t appear from the fact that series are faster that they are better.

Example 5. Let α1 = 111, α2 = 0011. Here we have

(111⊳ 0011) 1
2
,

but in the waiting δ
1
2
111−0011 we have

(0011≫ 111) 1
2
.
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3 FASTER SERIES

Faster series can be ”worse” series.

Example 6. Let α1 = 1100, α2 = 000. In the waiting δ
1
2
111−0011 we have

(1100≫ 000) 1
2

but
(000⊳ 1100) 1

2
.

Better series don’t need to be faster series.
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4 WAITING TIME

4 Waiting time for series of successes and failures and fairness of

random games

Definition 1.
Let u ∈ (0, 1) is an arbitrary real number. We call the random trial modelled with its
sample space (Ω0−1, p

u
0−1), where

Ω0−1 = {0, 1}, pu0−1(1) = u and p
u
0−1(0) = 1− u,

the Bernoulli trial and we denote it with δu0−1. The results of the Bernoulli trial are
denoted with 0 resp. 1 and we call them failure resp. success.

Definition 2.
We denote each result of m-multiple repetition of the trial δu0−1 with α which is called
a series of successes and failures with the length of m. We say that the series of α1 is a
subseries of series of α2, and we write α1 ⊂ α2, if α1 as a string of 0 and 1 is a subseries
of series α2. If α1 is not a subseries of α2, we write α1 6⊂ α2. If α1 6⊂ α2 and α2 6⊂ α1,
we say that series α1 and α2 are differential.

Definition 3.
Let α is the chosen series of successes and failures of length m. We call the repetition
of trial δu0−1 till the results m of the last trial make series α the waiting for series α
and we denote it with δuα. The number of repetitions of trial δ

u
α is a random variable T

u
α

on set ΩTuα = {m,m+1, m+2, . . .}.Number E(T
u
α ) is the mean waiting time for series α.

Definition 4.
Let α1 and α2 are series of successes and failures. If E(T

u
α1
) = E(T uα2) then we call

series α1 and α2 of the same speed at point u.
If E(T uα1) < E(T

u
α2
), than we call series α1 faster than series α2 point u.

Definition 5.
Given two differential series α1 and α2 of successes and failures, |αj | = mj for j = 1, 2.
We repeat trial δu0−1 as long as:

– results m1 of the last trials make series α1,

– or results m2 of the last trials make series α2,

is called the waiting for one of two series of successes and failures, and we denote it
with δuα1−α2 and its probability model with (Ωα1−α2 , p

u
α1−α2).

If
P uα1−α2(. . . α1)=P

u
α1−α2
(. . . α2),

we call series α1 and α2 alike at point u. If

P uα1−α2(. . . α1)>P
u
α1−α2
(. . . α2),
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4 WAITING TIME

then we call series α1 better than series α2 at point u.

� Given the following random game. Player GA tosses a coin till the results of the last
two tosses make series lr. Player GB tosses a coin till the results of the last two tosses
make series ll. The winner is the player who tosses first his/her series. Which of the
player has a higher chance to win?

Let us denote the tails with 0 and the heads with 1. It is possible to simulate the
game course with the rambling of a stone in a stochastic graph. (see [3] and [30]) in
Fig. 1.

s 1 10
1

1

0
0

a)

s 1 11
0

1

0

10

b)

Fig. 1
Using the algorithm for the calculation of the mean of the rambling time in the sto-
chastic graph (see [30], p. 399), we get

E(T10) = 4 and E(T11) = 6,

which means that series 10 is quicker than series 11, and so there is a higher chance to
win for player GA.

� Given another game. Players GA and GB toss a coin till the results of the last two
tosses make series lr (GA wins) or series ll (GB wins). This game represents the waiting
δu10−11, with its graph in Fig. 2.

s 1 11

10

0
1

0
1

Fig. 2
It seems that if series 10 is quicker than series 11, it must be also better. Paradoxically
series 10 and 11 are alike, which is obvious from the symmetry of stochastic graph in
Fig. 2.

This begs the question: What random variable connected with the waiting time for
series 10 and 11 do we have to think about to be able to make a decision which of the
series is better based on its mean?

In Fig. 3, there is a modified graph δu10−11.
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4 WAITING TIME

s 1 11

10 10

111

10

111

10

111 .......

.......

.......
1
0
1

0
1
0
1 1

0
1 1

0
1 1

0
1

0 0 0

Fig. 3
If we calculate the waiting time for series 10 and we get combination 11, then we start
again from node 11 , which becomes the starting node. We obtain a stochastic graph
with infinite number of nodes. The time of rambling in such a graph is a random va-
riable T 10−1110 , which represents also the waiting time for series 10. Fig. 4 shows several
consecutive periods of this modifications.

s 1 11

10

0

0
1 1

1a)

s 1 11

10 10

111
1
0
1

1

1
0
1

0
b)

s 1 11

10 10

111

10

111
1
0
1

1

1
0
1

0 0

1
0
1

c)

s 1 11

10 10

111

10

111

10

1110
1
0
1

1

0

1
0
1

0 0

1
0
1 1

0
1

d)

Fig. 4
Mean E(T 10−1110 ) of the waiting time in the graph in Fig. 4 can be determined as a limit
of a sequence. In the same way, we determine E(T 10−1111 ). As

E(T 10−1110 ) = E(T 10−1111 ) = 6,

the both series are alike.
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5 SPECIFIC TOOL

5 A stochastic graph as a specific tool of mathematics and

argumentation

Let us consider a random board game of gx−y. The board consists of two circles: ov and
ow. At the beginning inside the ov circle there are x coins and inside the ow circle there
are y coins. Let us assume that x + y = 3 and y 6= 3. There are two players, Ga and
Gb, in the game. They take turns and toss the 3 coins placed on the game board. Coins
that show heads stay in the circle they were originally placed in. Coins that show tails
change their circle. If all the coins end up in the ow circle after the toss, the player who
tossed them wins. Let us assume the Ga player takes the first run (see [6]).
Later in the article we will answer the question: which of the g3−0, g2−1 and g1−2

games is best (meaning which gives the best chance to win) for the Ga player and which
is best for the Gb player.
We will mark the experiment conducted in the game as δx−y. Let Ax−y mean the

Ga player wins and Bx−y mean the Gb player wins.
The random experiment of δx−y is conducted in some phases. Each single phase

consists of a coins toss and placing them in the circles. The experiment status after
the nth phase is a pair of (vn, wn), where vn means the number of coins placed in the
ov circle and wn means the number of coins placed in the ow circle after this phase. As
vn + wn = 3, the experiment status after the nth phase is defined by the vn number.
The possibilities here make a set of S = {0, 1, 2, 3}. We can interpret them as the
graph loops. The beginning of the game becomes the start loop and the experiment
status before the game (the 0 stage) becomes the edge loop (see[1]). Let us mark the
probability of the experiment going from the j to the k status as pjk. If pjk > 0, we
connect the j and k loop points on the graph with a line. Then we write the pjk number
next to the line. This way we get a stochastic graph and a game board simultaneously.

I. Let us start with the g3−0 game. The graph and the stages of constructing it are
shown in picture 1.

s

2

1

01
8

3
8

3
8

3
8

3
8

1
8

1
8

1
8

3
8

3
8

1
8

1
8

Fig. 1.
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5 SPECIFIC TOOL

This graph is a particularly useful tool of argumentation while calculating the pro-
bability of a certain player’s victory in the game.
We call the 0, 1 and 2 phases the inner ones. We can notice that once the δ3−0

experiment gets to one of the inner stages, the next toss will lead it either to the 0
state, with the probability of 1

8
, or to another inner state, with the probability of 7

8
.

These symmetries prove that the graph from picture 1 reduces to the one from picture
2.

s 01
8

7
8

Fig. 2.

The course of the game and its result can be registered if we include the time it
takes. Picture 3 shows the graph of the δ3−0 experiment after this modification.

a 0201 b

7
8

7
8

1
8

1
8

Fig. 3.

The Ga player can win only if the experiment after an even toss takes the 0 stage

of the graph from picture 2 or - which is really the same - the 01 stage of the graph

from picture 3. The Gb player can win if the experiment after an odd toss takes the 0

stage of the graph from picture 2 or - which is really the same - the 02 stage of the
graph from picture 3. From the interpretations above we can see that:
1) In case of the graph from picture 2 there is

P (A3−0) =
1

8
+ (
7

8
)2 ·
1

8
+ (
7

8
)4 ·
1

8
+ . . . =

1
8

1− (7
8
)2
=
8

15
and P (B3−0) =

7

15
.

2) Let P (A3−0) = x and P (B3−0) = y = 1 − x. We know from the graph shown in
picture 3, that:

x =
1

8
+ x · (

7

8
)2, so x =

8

15
and y =

7

15
.

So the player who starts the game has better chance to win it.
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Fig. 4.

II. Let us consider the g2−1 game. The δ2−1 experiment status at the beginning of the
game is 2. Picture 4 shows the stochastic graph of the δ2−1 experiment.
Just like in the previous game of g3−0, once the experiment δ2−1 gets to one of the

inner stages, the next coins toss leads it either to the 0 stage, with the probability
of 1
8
(the player who started the game wins it), or to another inner stage, with the

probability of 7
8
. So we can see that the graph of this experiment is isomorphic with

the one from picture 2 (and, considering the time, with the graph from picture 3), and

P (A2−1) =
8

15
and P (B2−1) =

7

15
.

III. It is easy to see that when we consider the g1−2 game we get a graph (as its board)
isomorphic with the graphs of the g3−0 and g2−1 games. So that

P (A1−2) =
8

15
and P (B1−2) =

7

15
.

Finally we get:

P (A3−0) = P (A2−1) = P (A1−2) =
8

15

and

P (B3−0) = P (B2−1) = P (B1−2) =
7

15
.

Summary. The final conclusion of our deliberations is surprising: the players’ chance
to win does not depend on the experiment status at the beginning of the game, the
player who starts the game wins it with the probability of 8

15
and the player who takes

the second turn tossing the coins wins it with the probability of 7
15
.

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect
those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor
EACEA can be held responsible for them.

21



6 CALCULATING SUMS

6 Stochastic tools for calculating sums of certain numerical series

The mathematical analysis theorems let decide if a given numerical series is convergent
but in general they don’t let appoint its sum. The work concerns stochastic tools for
calculating sums of certain series.

If A is a finite set , then A denotes the cardinality of the set A, that is the number
of its elements. In this work the notation Nk denotes the set {k, k + 1, k + 2, . . .}.

6.1 Numerical series and its sum

Definition 1 Let us assume that (an)n∈N1 is an infinite numerical sequence. Let s1 = a1
and let sn = a1 + a2 + a3 + · · ·an for n = 2, 3, 4, . . . . The number sn is called the n-th
partial sum of the sequence (an)n∈N1 and an infinite sequence (sn)n∈N1 is called the
series and is denoted by

∑

an. If the sequence (sn)n∈N1 has a finite limit, then we say
that the series

∑

an is convergent. If lim
n→∞
sn = s, then number s is called the sum of

the sequence and is denoted by
∞
∑

n=1

an = s.

This sum s is understood as an infinite sum a1 + a2 + a3 + · · · that is as a sum of all
infinitely numerous terms of the sequence (an)n∈N1 that is

a1 + a2 + a3 + · · · = lim
n→∞
(a1 + a2 + · · ·+ an).

Definition 2 We say that the series
∑

an is absolutely summable if the series
∑

|an| is
convergent.

Theorem 3 If the series
∑

|an| is convergent, then the series
∑

an is also convergent,
in other words: any absolutely summable series is convergent (see [10]).

Definition 4 Let an = a · q
n−1 for n ∈ N1, where a and q are established real numbers

and q 6= 0. The series
∑

a · qn−1, as a series created on a base of a geometrical sequence
(a · qn−1)n∈N1, is called the geometrical series.

Theorem 5 If |q| < 1, then the geometrical series
∑

a · qn−1 is convergent and
∞
∑

n=1

a · qn−1 = a
1−q
.

The fraction a
1−q
is then the sum of all (infinite number of) terms of geometrical sequ-

ence (a · qn−1)n∈N1, if |q| < 1.

Example 6 If u ∈ (0, 1), then the sequence (an)n∈N1, where an = (1 − u)
n−1 · u for

n ∈ N1 is a geometrical sequence, for which a = u and q = 1− u, therefore

a1 + a2 + a3 + · · · =
∞
∑

n=1

an =
u

1−(1−u)
= u
u
= 1.
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6 CALCULATING SUMS

6.2 Notions of the discrete probability calculus and concept of

series

Definition 7 Let Ω be any set of at least two elements and let it be a countable set at
most. The nonnegative function p : Ω→ R satisfying the condition

∑

ω:ω∈Ω

p(ω) = 1,

is called the probability distribution on the set Ω.

Let Ω = {ω1, ω2, ω3, . . .}. If p is the probability distribution on a set Ω and p(ωn) =
pn for n ∈ N1, then the sum of the series

∑

pn is equal to 1.

Example 8 The geometrical sequence (an)n∈N1, where an = (1− u)
n−1 · u and 0<u<1

is the probability distribution on the set N1. It is called the geometrical distribution.

In order to determine discrete probability space (Ω,Z, P ) it is needed an sufficient
to determine the probability distribution p on the set Ω, so we can treat a discrete
probability space as a pair (Ω, p).
If the pair (Ω, p) is the probability space, Ω is a countable set and A is a countable

subset of the set Ω, then P (A) is the sum of a certain series. Probability of such event
A, that is a sum of a certain series, may be calculated with the use of certain stochastic
theorems.

Definition 9 Let (Ω, p) be a probability space. Any function X : Ω −→ R is called a
random variable in this space (Ω, p).

Definition 10 Let ΩX = X(Ω) and {X = xj} = {ω ∈ Ω : X(ω) = xj} for xj ∈ ΩX .
The set {X = xj} is an event in the probability space (Ω,Z, P ) created by the pair
(Ω, p). Let P (X = xj) denotes its probability. The function pX : ΩX −→R defined by
the formula

pX(xj) = P (X = xj) for xj ∈ ΩX ,

is called the distribution of the random variable X.

Theorem 11 The function pX is the probability distribution on the set ΩX , therefore
the pair (ΩX , pX) is the discrete probability space.

Example 12 We say that the random variable X has a geometrical distribution, if
ΩX = N1 and pX(n) = (1− u)

n−1 · u for n ∈ N1, where 0 < u < 1.
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6 CALCULATING SUMS

Definition 13 Let ΩX be a set of values and pX a distribution of a random variable X
in a discrete probability space (Ω, p). The expected value of the random variable X is
called the number

E(X) =
∑

xj :xj∈ΩX

xj · pX(xj),

under the condition that if ΩX is a countable set, the series
∑

xj · pX(xj) is absolutely
summable.

Theorem 14 If X1, X2, X3, . . . , Xn are the random variables in the same discrete pro-
bability space (Ω, p) and each of them has its expected value, then the expected value
has also the random variable X1 +X2 +X3 + · · ·+Xn and

E(X1 +X2 +X3 + · · ·+Xn) = E(X1) + E(X2) + E(X3) + · · ·+ E(Xn).

6.3 Duration of random experiment consisting of random number

of stages as the duration of random walks on a graph and its

average duration versus series.

Among random experiments consisting of stages we set apart experiments with random
number of stages. We assume that successive stages are carried out in successive time
units. According to this convention, the number of stages becomes the duration of a
given experiment.
Let 0< u< 1. The Bernoulli trial is a random experiment δu0−1 whose outcome is

random and can be either of two possible outcomes: success denoted by number 1 or
failure denoted by number 0. Number u is the probability of success.

Example 15 There are two results of a toss-up (flipping a coin):
— it came down heads, the result is coded by 0 and called failure,
— it came down tails, the result is coded by 1 and called success.
A toss-up is a Bernoulli trial. Probability of success u = 1

2
.

Definition 16 Repeating the attempt δu0−1, as long as we get success k times, is an
experiment of random number of stages, which is called awaiting on k successes, or the
Pascal process and it is denoted by δuk . In the case k = 1 this is awaiting for the first
success.

Definition 17 Let α ∈ {0, 1}k. The sequence α is interpreted as a result of k-th repeti-
tion of the attempt δu0−1 and it is called a series of successes and failures. The number
k is called the series length and is denoted by |α|.

Definition 18 Let α ∈ {0, 1}k. Repeating the attempt δu0−1, as long as the results of k
last stages will create the series α is called awaiting for series α and is denoted by δuα.
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6 CALCULATING SUMS

Number of repetitions of the attempt δu0−1 until such time as the series α is gained, is
a random variable Tα, which is called the awaiting time for series α.

A random experiment of random number of stages is a uniform Markov chain and
has its own Engel stochastic graph. The course of such experiment is interpreted as a
random walk across the mentioned graph. There are presented two algorisms in [30] (p.
398-400): the absorption algorism and the algorism of average random walking time
across the stochastic graph. First of these algorisms is used for calculating probability
with which a pawn walking across the graph will reach the established node point. The
other from algorisms lets calculate average random walking time of the pawn across the
stochastic graph. In both algorisms the bottom line is to solve the set of linear equations
in which number of equations is equal to the number of nodes in this stochastic graph.

Example 19 Let 0 < u < 1. Let us consider a numerical sequence (an)n∈N1 , where
an = n ·u · (1−u)

n−1 for n ∈ N1 and the series
∑

an. In areas of mathematical analysis
the sum of this series may be found with the use of the differential theorem for function
series. In areas of probability calculus the calculation of the sum of this series may be
reduced to solution of simple set of linear equations.
Let T u1 be the time of awaiting for the first success. The distribution of this random

variable is a geometrical sequence (bn)n∈N1 , where
bn = P (T

u
1 =n) = u · (1− u)

n−1 for n ∈ N1.
The course of awaiting δu1 may be interpreted as a random walking across a stochastic
graph presented in Figure 1. In this interpretation the random variable T u1 is a time of
random walking across this graph.

0 1u

1− u

Fig. 1.

The expected value of the random variable T u1 is the sum of the series
∑

n · u · (1 − u)n−1, where n ∈ N1. Let ej denotes the average random walking ti-
me across the graph in Figure 1, that started in the node j in this graph (j is the
wait state, j = 0 or j = 1). Therefore it is E(T u1 ) = e0. Using the algorism of average
random walking time across the stochastic graph we receive the system of equations:







e0 = 1 + (1− u) · e0 + u · e1,

e1 = 0,

that is e0 =
1
u
, and therefore

∞
∑

k=1

k · u · (1− u)k−1 =
1

u
.

Then it is E(T u1 ) =
1
u
.
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6 CALCULATING SUMS

Example 20 Let T uk be the time of awaiting for k successes (or the duration time of
Pascal process). The distribution of this random variable T uk is e sequence (pn)n∈Nk ,
where

pn = P (T
u
k = n) =

(

n−1
k−1

)

· uk · (1− u)n−k for n = k, k + 1, k + 2, . . ..

The expected value of the random variable T uk is the sum of the series
∑

n · pn, where
n ∈ Nk, that is

E(T uk ) =
∞
∑

n=k

n ·
(

n−1
k−1

)

· uk · (1− u)n−k. (6.3.1)

Let us consider the Pascal process for k = 5. In the Figure 2 we have a stochastic graph
for this awaiting for five successes.

0 1 2 3 4 5
u u u u u

1−u

1−u 1−u 1−u 1−u

Fig. 2.

1◦ Let T uj→k be an awaiting time for success number k in situation when we already
have j successes. Let k = j+1 for j = 0, 1, 2, 3, . . . , k−1. The random variable T uj→(j+1)
is the awaiting time for the first success, therefore E(T uj→(j+1)) =

1
u
and

T uk = T
u
0→1 + T

u
1→2 + T

u
2→3 + T

u
3→4 + · · ·+ T

u
(k−1)→k,

and thus - it results from the theorem 3, that

E(T uk ) = E(T
u
0→1) + E(T

u
1→2) + E(T

u
2→3) + · · ·+ E(T

u
(k−1)→k) = k ·

1
u
= k
u
,

and taking into account (6.3.1) we get that

∞
∑

n=k

n ·
(

n−1
k−1

)

· uk · (1− u)n−k = k ·
1

u
=
k

u
. (6.3.2)

2◦ It may be checked that the formula (6.3.2) may be also obtained by using algorism of
the random walking average time across the stochastic graph of awaiting for k successes.

Example 21 Let

An = {(a1, a2, a3, . . . , an) ∈ {1, 2, . . . , n}
n : a1 ¬ a2 ¬ a3 ¬ . . . ¬ an}.

If a ∈ An and a = (a1, a2, . . . , an), then a = a1 · a2 · . . . · an. Let us consider the series
∑

n · 4!
54
·
(

∑

a∈An−5 a
)

for n ∈ N5 and its sum

∞
∑

n=5

n ·
4!

54
·





∑

a∈An−5

a



 . (6.3.3)
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6 CALCULATING SUMS

Let U1→5 denotes an urn with five balls numbered from 1 to 5. The experiment of a
random number of stages is the randomization (drawing balls) with returning them to
the urn, as long as each ball is drawn at least once. Such an experiment is called the
collector’s scheme. The number of a drawn ball will be called the drawn number. In
the Figure 3 we have the stochastic graph of this scheme. The node label is the state of
the collection, that is the number of already drawn numbers. The number of drawings
(randomizations) in this experiment is the random variable T1→s. This is the duration
time of this collector’s scheme.

0 1 2 3 4 5
1

4
5

3
5

2
5

1
5

1
5

2
5

3
5

4
5

Fig. 3.

The expected value of the duration time of this collector’s scheme, that is E(T1→s)
is the sum
5 · 4!
54
+ 6 · 4!

55
(1 + 2 + 3 + 4) + 7 · 4!

56
· (1 · 1 + 1 · 2 + 1 · 3 + 1 · 4 + 2 · 2 + 2 · 3 + 2 · 4

+3 · 3 + 3 · 4 + 4 · 4) + · · · .

It may be checked that the last finite sum is the sum of the form (6.3.3).
It results from the theorem 4 that the expected value of the duration time of the

discussed collector’s scheme (see Figure 3) is the following sum 1+ 5
4
+ 5
3
+ 5
2
+ 5, that

is E(T1→s) =
137
12
and therefore

∞
∑

n=5

n ·
4!

54
·





∑

a∈An−5

a



 =
137

12
.

Definition 22 The sequence (f1, f2, f3, . . .), where f1 = f2 = 1 and fn = fn−2 + fn−1
for n ∈ N3 is called the Fibonacci sequence. There is f3=2, f4=3, f5=5, f6=8 etc. The
number fn is called the n-th Fibonacci number.

Example 23 Let us consider the numerical series
∑ fn−1

2n
, where n ∈ N2 and its sum

∞
∑

n=2

fn−1
2n
= 1
22
+ 1
23
+ 2
24
+ 3
25
+ 5
26
+ 8
27
+ · · · ,

where the numbers f1, f2, f3, . . . are the successive terms of Fibonacci sequence.
In this context, let us consider the repetitions of toss-up until the tails appear two

times in a row. Such a random experiment δ11 is called awaiting for the series 11 (this
means the series of heads or tails). Its result is at least two element sequence consisting
of elements from the set {0, 1} and satisfying the condition that the last two element
create the series 11 and non of two previous successive elements create such series.
By Ω11 we denote the set of random experiment results δ11. Therefore it may be for
example: 01011 ∈ Ω11, 000011 ∈ Ω11. If ω is the result of awaiting δ11, then by |ω| we
denote its length, this is the number of elements in the sequence ω. Let
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6 CALCULATING SUMS

p11(ω) =
(

1
2

)|ω|
dla ω ∈ Ω11.

The function p11 is the probability distribution on the set Ω11, therefore the pair
(Ω11, p11) is a probability space. This is a model of awaiting δ11.
Let us connect an event

Bn = {the series 11 will be gained after n-th toss-up} for n ∈ N2

with the random experiment δ11. In the probability space (Ω11, p11) there is
B2 = {11}, B3 = {011}, B4 = {0011, 1011}, B5 = {10011, 01011, 00011}.

The power of event connected with awaiting δ11 is the number of results (of the expe-

riment δ11) that favour this event. Let bn = Bn. There is b2 = 1, b3 = 1, b4 = 2, b5 = 3
etc. Let us notice that bn = fn−1 for n = 2, 3, 4, . . .. All the results of awaiting δ11,
except the result 11, are the sequences ending with the series 011. For n = 6, 7, 8, . . .
the event Bn is favoured by the number of results equal to the number of (n−3) terms
arrangements with repetitions of the set {0, 1}, in which the digit 1 does not appear
two times in a row. All the results favouring the event Bn are the sequences of the
length n, therefore

p11(ω) =
(

1
2

)n
for any ω ∈ Bn.

It results from the definition 4 that
P (Bn) = bn ·

(

1
2

)n
= fn−1 · (

1
n
)n = fn−1

2n
for n = 2, 3, 4, . . . .

There is
∞
⋃

n=2

Bn = Ω11 and Bj ∩ Bk = ∅ for j 6= k, therefore the events B2, B3, B4, . . .

create a partition of Ω11. It results from here that
∞
∑

n=2

P (Bn) = 1, that is

∞
∑

n=2

P (Bn) =
∞
∑

n=2

fn−1

2n
= 1. (6.3.4)

Let us consider the series
∑ fn−1

2n
, where n ∈ N3, and its sum

∞
∑

n=3

fn−1
2n
= 1
23
+ 2
24
+ 3
25
+ 5
26
+ 8
27
+ · · · . (6.3.5)

From the formula (6.3.4) it results that
∞
∑

n=3

fn−1
2n
=
∞
∑

n=2

fn−1
2n
− f1
22
= 1− 1

4
= 3
4
.

The sum of the last series may be found in the other way, basing on the stochastic
approach.
In a game in which two players GA and GB are participating, a toss-up is being

repeated until: after tails up two times heads up will appear one by one (...100) and
then the GA player is winning, or after two heads up one by one, the tails up will appear
(...001) and then the GB player is winning. It is a special case of so-called Penney’s
game. It isn’t important here who is flipping a coin.
The random experiment carried out in this game is an awaiting for one of two

series of heads and tails. Let us denote this by δ100−001. The set Ω100−001 of its results
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6 CALCULATING SUMS

is a set of at least three-elements sequences consisting of elements from the set {0, 1}
and satisfying the condition that last three elements create the series 100 or series
001 and none three previous successive elements create these series. For example the
results of the experiment δ100−001 are the sequences: 00001, 1010100, 10101010100. Let
p100−001 denotes the function that associates to each result of experiment δ100−001 its
probability. If ω ∈ Ω100−001 and |ω| = n, then p100−001(ω) = (

1
2
)n for n = 3, 4, 5, . . . .

The pair (Ω100−001, p100−001) is the probability space.
Let us consider the events:

A={the experiment δ100−001 will close with series 100}.
An={the experiment δ100−001 will close with series 100 after n attempts}.
In the described game the player GA is winning whenever the event A happens. Each
result containing event A is the sequence ending with series 100, in which no three
successive previous elements create series 100, nor series 001. It results from here that
no two successive previous elements create series 00. If cn denotes the number of results
realizing the event An, then

c3 = 1, c4 = 2 and cn = fn−1 for n ∈ N5.

There is

A =
∞
⋃

n=3

An and P (An) =
fn−1

2n
, for n ∈ N3,

that is

P (A) =
∞
∑

n=3

fn−1

2n
.

The probability of the event A is then the sum (6.3.5) that is the sum of the discussed
series.
The course of the random experiment δ100−001 (that is the course of the game) is

interpreted as random walk of pawn across the graph in the Figure 4 (this is a kind of
draught-board to the discussed game).

s 0 00 001
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0 0 1

1

0 1

0

1
0

1
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s 0 00 001
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1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

b)

Fig. 4.

We put the pawn in the node start and after the subsequent toss-up we move it
along the line corresponding to the result of the toss-up1 . The experiment (and the
game) is ending when the pawn reaches the node 100 (an event A takes place and

1 In the Figure 4a there are digits 0 and 1 assigned to the arrows in the graph, as results of a

toss-up, in the Figure 4b instead of these results their probabilities are assigned to the arrows.
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6 CALCULATING SUMS

player GA is winning) or to the node 001 (player GB is winning). If the pawn finds its

way to the node 00 , in fact the game becomes already decided (player GB is winning).

If the pawn reaches the node 1 , the game is also decided (player GA is winning). It

results from here that P (A) is a probability of reaching the node 1 by the pawn.

The pawn will reach the node 1 , when at first stage tails fall out or when at first
stage heads will fall out but in second stage - tails, what means that the probability of
reaching the node 1 is equal to 1

2
+ 1
4
that is P (A) = 1

2
+ 1
4
= 3
4
. Therefore we have

P (A) =
∞
∑

n=3

fn−1

2n

and at the same time P (A) = 3
4
, that is

∞
∑

n=3

fn−1

2n
=
3

4
.

Example 24 Let us return to the random experiment δ11 and let us consider the series
∑

n · fn−1 · (
1
2
)n, where n ∈ N2 and its sum
∞
∑

n=2

n · fn−1 ·
(

1
2

)n
= 2 · 1 ·

(

1
2

)2
+ 3 · 1 ·

(

1
2

)3
+ 4 · 2 ·

(

1
2

)4
+ · · · .

Let T11 be an awaiting time for the series 11 measured by the number of toss-up
attempts carried out in the experiment δ11. Let us return to the event Bn discussed in
Example 8. Let us notice that {T11=n} = Bn for n ∈ N2, and thus

P (T11=n) = P (Bn) = fn−1 · (
1
2
)n for n ∈ N2.

The expected value of the random variable T11 is by definition the sum of series
∑

n·P (T11=n), where n ∈ N2 that is the sum
∞
∑

n=2

n · fn−1 · (
1
2
)n,

where numbers f1, f2, f3, ... are the subsequent elements of Fibonacci sequence.
The Figure 5 presents the graph of awaiting for two tails one after another. The

course of this awaiting is interpreted as random walking of the pawn across this graph.
The duration time of the experiment δ11 is measured by the number of arrows travelled
by the pawn from the start start to the finish 11 . In this interpretation the awaiting
time for series 11 is the time of random walking around the graph in Figure 5.

0 1 11

1
2

1
2

1
21

20 1 11
r

o

ro

Fig. 5.

Using the algorism of average random walking time around the stochastic graph we

get that E(T11) = 6. From one side E(T11) is the sum
∑∞
n=2 n · fn−1 ·

(

1
2

)n
, but from

the other site E(T11) = 6 and thus
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6 CALCULATING SUMS

∞
∑

n=2

n · fn−1 ·
(

1
2

)n
= 6.

6.4 The arithmetic-geometric series and stochastic

Definition 25 Let an = a + (n − 1)r and gn = bq
n−1 for n ∈ N1. The sequence (an) is

an arithmetic sequence and the sequence (gn) is geometric sequence. Let us consider a
new sequence (cn), where cn = an · gn for n ∈ N1. The series created on the basis of
the sequence (cn) that is the series

∑

[a+ (n− 1)r] · b · qn−1, where n ∈ N1 is called the
arithmetic-geometric series.

It may be proved that if |q| < 1, then the series
∑

[a+(n−1)r]·b·qn−1 is convergent.
Finding its sum is a relatively complicated task of mathematical analysis. It may be
proved (see [?]) that

a · b+ (a+ r) · bq + (a+ 2r) · bq2 + (a+ 3r) · bq3 + · · · =
a · b

1− q
+
r · bq

(1− q)2
. (6.4.1)

We will show how to find the sum of the above series using the tools of stochastic.
It occurs for the sum of the arithmetic-geometric series

∑

[a+ (n− 1)r] · b · qn−1 as
the sum of all infinite number of elements

ab+ (a+ r)bq + (a+ 2r)bq2 + (a+ 3r)bq3 + (a + 4r)q4 + · · · =
ab+ abq + abq2 + abq3 + abq4 + · · ·+ brq + 2brq2 + 3brq3 + 4brq4 + · · · =

ab(1 + q + q2 + q3 + q4 + · · · ) + brq(1 + 2q + 3q2 + 4q3 + · · · ).

The sum in the first bracket of the last expression is a sum of all infinite number of
geometrical sequence elements, that is

ab(1 + q + q2 + q3 + q4 + · · · ) = ab
1−q
.

The sum in the second bracket of this expression that is the infinite sum
1 + 2q + 3q2 + 4q3 + · · ·

will be found using the fact the expected value of the random variable T of geometrical
distribution P (T = n) = qn−1 · (1 − q), where |q| < 1 and n ∈ N1 is the ratio

1
1−q
.

Because we have the identity

1 + 2q + 3q2 + 4q3 + · · · = E(T )
1−q
= 1
(1−q)2
.

We proved in this way (and what’s more - using the stochastic tools) that the formula
(6.4.1) is the formula for the sum of the arithmetic-geometric series.
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7 STOCHASTIC TREE

7 Stochastic Tree and Construction of Discrete Probability

Spaces and Series Summation

The presented chapter deals with sums of certain series which are interpreted in context
of discrete probability space as consecutive ball draws performed in phases. Stochastic
trees represent an unusual tool for determining sums of numerical series.

7.1 Discrete random experiment

Definition 26 Discrete random experiment is called a real or artificial ([?], p. 16-17 and
also [?], p. 13-14) experiment δ, which develops and results in accordance with the
following conditions: 1) set Ωδ of all results of the experiment is as much countable
as possible, 2) for each result, it is possible to determine a priori the probability with
which the experiment can end with such a result.

Within discrete experiments, we distinguish those, which are performed in phases.
They are called multi-phase experiments. Such tosses are n-fold coin tosses. Within
multi-phase experiments, we distinguish those in which the number of the phases is
random. They are called random experiments with random number of phases. Such
a random experiment with a random number of phases is for example when a dice is
being thrown until number six is thrown.

Definition 27 If Ωδ is a set of results of discrete random experiment δ, and pδ is a
function, which assigns to each result of set Ωδ a probability with which experiment δ
can end with such a result, then pair (Ωδ, pδ) is a discrete probability space which is
called a model of stochastic drawing experiment δ.

7.2 Multi-phase experiments and stochastic tree rules

In [?] is made a discrete probability space for as drawing experiment as their stochastic
model ([?], p. 41). In case of a multi-phase experiment, construction tool of discrete
probability space (Ω, p) as its model is stochastic tree and two rules:
— rule R1: result of an random experiment performed in phases is a progression of
results of consecutive phases, such a result is represented by a tree branch;
— rule R2 (reproduction rule): for each branch of a stochastic tree (and at the same
time for each result represented by the branch), there is a corresponding product of
numbers assigned to consecutive parts of the branch; the product is called branch weigh
([?], p. 42-43);
Using rule R1, set Ω of results of random experiments is determined. The sum of

branch weighs of all branches on the stochastic tree is equal to 1. Using rule R2, we
determine function p, which is a probability decomposition on set Ω.
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7 STOCHASTIC TREE

7.3 Stochastic tree and sums of certain series

Let an =
1

n·(n+1)
where n ∈ N1. Let us consider series

∑

an also its sum

∞
∑

n=1

1
n·(n+1)

= 1
1·2
+ 1
2·3
+ 1
3·4
+ · · · .

In areas of mathematical analysis the sum of this series may be found with the use
1

n·(n+1)
= 1
n
− 1
n+1
, then

sn =
(

1− 1
2

)

+
(

1
2
− 1
3

)

+
(

1
3
− 1
4

)

+ . . .+
(

1
n−1
− 1
n

)

= 1− 1
n
,

it means that
lim
n→∞
sn = lim

n→∞
(1− 1

n
) = 1.

Definition 28 Ub∗c denotes a box in which there are b white balls and c black balls. Let
us consider following multi-phase random experiment δPb∗c. The first phase is a random
ball draw from box Ub∗c. If the randomly drawn ball is black then the experiment ends;
if the ball is white, the ball is put back to the box together with another additional
white ball. From this new box U(b+1)∗c another ball is drawn. It is the second phase.
If the randomly drawn ball is black then the experiment ends; if the ball is white, the
ball is put back to the box together with another additional white ball. From this new
box U(b+2)∗c another ball is drawn. It is the third phase and depending on the result of
the draw and the procedure is performed analogically as described. This procedure is
performed until a black ball is drawn out. This experiment δPb∗c with random numerical
phases is called Polya’s scheme ([?], p. 116).

The result of experiment δPb∗c is unambiguously described by phase number in which
a black ball is drawn out first time. Let ωn denote the result: a black ball is drawn
out in the n-th phase (n ∈ N1). In this case, it is possible to code result using rule
R1. Set of results of the experiment δc is an infinite set Ω

P
b∗c = {ω1, ω2, ω3, . . .}.

Example 29 Sum of series
∑

an, where an =
1

n·(n+1)
may be found by using stochastic

method. Let us consider Polya’s scheme δP1∗1. The figure 1. presents start of fragment
stochastic tree this scheme and digraph of function p1∗1 defined by rule R2.
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7 STOCHASTIC TREE

It is important to note that p1∗1(ωn) =
1

n·(n+1)
where n = 1, 2, 3, . . . . Expression

p1∗1(ωn) is the weigh of the tree branch representing result ωn. The fact that the sum
of all branch tree weighs is equal to 1 results in the following

∑

ωn:ωn∈ΩP1∗1

p1∗1(ωn) =
∞
∑

n=1

1
n·(n+1)

= 1
1·2
+ 1
2·3
+ 1
3·4
+ · · · = 1.

Example 30 Let us consider Polya’s scheme δP1∗2 and serie
∑ 1
n(n+1)(n+2)

where n ∈ N1

and its sum
∞
∑

n=1

1
n(n+1)(n+2)

= 1
1·2·3
+ 1
2·3·4
+ 1
3·4·5
+ · · · .

Sum of all tree branch weigh of stochastic experiment δP1∗2 is a infinite sum:

2
3
+ 1
3
· 2
4
+ 1
3
· 2
4
· 2
5
+ 1
3
· 2
4
· 3
5
· 2
6
+ · · ·+ 1

3
· 2
4
· · · n−4
n−2
· n−3
n−1
· 2
n
+ · · · .

It is sum

2
3
+ 2
3·4
+ 2·2
3·4·5
+ 2·2
4·5·6
+ · · ·+ 2·2

(n−2)(n−1)n
+ · · · .

The fact that it is the sum of all branch tree weighs, it results in

2
3
+ 2
3·4
+ 2·2
3·4·5
+ 2·2
4·5·6
+ · · ·+ 2·2

(n−2)(n−1)n
+ · · · = 1,

therefore
∞
∑

n=1

1
n(n+1)(n+2)

= 1
4
.

Example 31 Let us consider series
∑ 1
(2n−1)(2n+1)

, where n ∈ N1 also Polya’s scheme

δP2∗2. It is necessary to say that if p2∗2 is a function defined on set Ω
P
2∗2 = {ω1, ω2, ω3, . . .}

using rule R2, to p2∗2(ωn) =
1

(2n−1)(2n+1)
where n ∈ N1. It is the branch weight repre-

senting the result ωn in the stochastic tree of Polya’s scheme δ
P
2∗2.

The sum of all branches of the stochastic tree of the experiment δP2∗2 is equal to:

2
3
+ 1
3
· 2
5
+ 1
3
· 3
5
· 2
7
+ 1
3
· 3
5
· 5
7
· 2
9
+ · · ·+ 1

3
· 3
5
· 5
7
· · · 2n−3
2n−1
· 2
2n+1
+ · · · .

It is the series

2
1·3
+ 2
3·5
+ 2
5·7
+ 2
7·9
+ · · ·+ 2

(2n−1)(2n+1)
+ · · · .

Considering that the sum of weigh equals 1, we end up with equation

2
1·3
+ 2
3·5
+ 2
5·7
+ 2
7·9
+ · · ·+ 2

(2n−1)(2n+1)
+ · · · = 1,

therefore
∞
∑

n=1

1
(2n−1)(2n+1)

= 1
1·3
+ 1
3·5
+ 1
5·7
+ · · · = 1

2
.

In the work, we introduced a method used for determination of sum of some number
series using stochastic trees of Polya’s scheme: δP1∗1, δ

P
1∗2 and δ

P
2∗2.
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