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1 Stochastic graphs vs. in-school probability theory teaching

process

1.1 Probability theory vs. intuition

Mathematical research and discovery is not only a result of one’s pure deduction, in-
ductive thinking and analogy-based reasoning but it is also a result of intuitive thinking
(see [29]). The formal approach towards mathematics is often opposed to the intuitive
approach. Abstractions and schemas are contrasted to “seeing” and “perception” of
general, important mathematical constructions and quantitative and space relations.
The inspiration and beginning of all discoveries as well as the point that gives certa-
inty in all kinds of reasoning and the author of new ideas, hypotheses or statements is
“obviousness”, “common sense”, that is – intuition.
For a long time Freudenthal used to replace the word ”intuition” with a phrase

”shaping of mathematical objects” (see [6]). He was doing so because of a wide range
of meanings that the word ”intuition” has in different languages. Freudenthal also wrote
(see [7]) that ”intuitions without concepts are empty, and concepts without intuitions
are blind”.
Stochastic intuitions are the ability of drawing judgments and beliefs of probabilistic

character without any conscious inference or even without perceiving the clues which
justify that belief or judgement. It is an ability allowing us to estimate properly the
probabilistic characteristics (the event’s probability, the expected value, distribution
or stochastic independence) of a given sample or population on the basis of incomplete
data about the sample and without any (conscious) reasoning or analysis, when the
estimation is based only on one’s experience or knowledge.
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1 TEACHING PROCESS

The intuitive conclusions are the ones which we consider obvious, we draw them
instantly, almost without thinking, without any reasoning, calculations or argumen-
tations on the basis of images, schemes or situation models that we have in memory.
Intuitive thinking is thinking about an abstract situation through its specific model
(see [22]).
In [33], [34] and [35] we can find the research of psychologists A. Tversky and D.

Kahneman which show that people do not have their probabilistic intuitions properly
developed. Humans were not provided even with basic probabilistic intuitions through
evolution.
Wrong probabilistic intuitions may be mathematically – based. They can be a re-

sult of lack of basic probabilistic, stochastic and combinatorial knowledge, but they can
also rise from its poor acquisition (a formalized lecture does not eliminate mistakes in
intuitive judgments). They can also have psychological background. A formal expla-
nation of the probability theory and statistics rules is not enough to eliminate those
“incorrect representations” in the process of probabilistic predicting, which is seen as
an important pre-decisive process by psychologists. The psychological research show
that in the process of predicting people do not use probabilistic arguments as much as
they use some rules, principles and strategies.
Tversky and Kahneman analyzed the basis of incorrect representations (incorrect

intuitions) in situations concerning probability estimations. They point out the diver-
gence between a subjective probability (i.e. estimation of probability given by a person
as his /her estimation of a chance of a given event to happen) and objective, norma-
tive probability resulting from a probabilistic model. They conducted the research as
a part of a bigger project concerning problems of teaching mathematics. They studied
the strategies used by people of different age and occupation while solving specific
stochastic (combinatorial, as a matter of fact) problems.
J. M. Shaughenessy’s research shows how vast is the role of personal contact between

a person and empiricism (drawing lots, working with statistical data, using the pre-
developped data, like the results of chance games, calculating frequencies, confronting
the a posteriori judgments with the ones made a priori) in developing correct stochastic
intuitions which appear in using heuristic strategies properly. The same research proves
that teaching probabilistic theory in too formalized way, apart from statistics, omitting
the empirical aspect of probabilistic issues and leaving out some classical paradoxes
like problems – stochastic surprises does, not remove incorrect intuitions. Tversky and
Kahneman emphasize the fact, that the same mistakes are made by ”stochastically
naive” students (the ones with no probabilistic experience) and adults – even ones who
had graduated from advanced but formalized stochastic courses. They find mistakes of
this kind made even by psychologists who have some knowledge of stochastics.

1.2 The functional teaching of mathematics

The idea of functional teaching is the basic strategy of didactically correct process of
teaching-learning mathematics. It may also be seen as a basic strategy of discovering
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1 TEACHING PROCESS

and creating mathematics by students (see [32]). It is a universal method, recommen-
ded in teaching different subjects, but in mathematics – because of an abstract and
operative character of mathematical notions – it has got a particular meaning. In func-
tional teaching we try to show mathematics from the notional side, not through the
algorithms and rules, as it was in the mechanistic approach. The definitions, rules,
reasoning or theorems are important, but they come later on, as a summary, a result
of different activities, discovering and using algorithms. According to the integral ap-
proach, mathematics should grow from reality, everyday situations. In the functional
method the objects and phenomena of the students’ environment do not have to be
the starting point of mathematical issues. Along with real situations we can use the
ones artificially created, using special teaching aids as well as purely abstract problems.
The care for precision and order, for clarity and understanding of mathematical issues,
for the compatibility of school and scientific notions is vital in the functional teaching.
The basis of the student’s mathematical activity is his awareness of where in the ”math
construction” he actually is at the moment. The overriding aim of this teaching me-
thod is the student gaining operative knowledge not on the basis of chaotic trials of
solving schematic problems or too ”casual work”, but through the student’s activities
carefully planned by the teacher. Only a well trained teacher, with a good knowledge
of methodology can plan the student’s work properly and lead the student to create se-
quent elements of mathematical knowledge, stressing ”mathematical activity, working
in mathematical world and its connection to reality, creative experience gathered by
the student gradually through solving problems open for creativity at his level” (see
[22]).
Through the functional teaching the constructive approach is accomplished. The

student creates his own knowledge integrated with various materials and tasks, on the
way of reach experience gathered in cooperation with the teacher and fellow students.
However, it is not about the superficial shaping of mathematical issues leading to the
answer to ”what is it” question. It is about active study of techniques and methods
that allow the student to solve ”the how do we construct” problems. We can find the
confirmation of this idea in Piaget’s Where does education aim in an extended and
supported by numerous research form. Piaget claims there that the basic condition of
the whole mind shaping process, which is especially important in the matters that lead
young learners to science, is using active methods of teaching. They allow the student
to spontaneously search for solutions and demand each truth that is to be discovered
to be rediscovered by the student and not only passed to him.

1.3 Probability versus stochastic games

Probability is present at every stage of teaching math teachers. But they often lack
proper tools of introducing probability at school. This situation is eve a bigger challenge
for primary and secondary school teachers. A real didactic suggestion is to introduce
stochastic issues on the grounds of chance games that are often followed by lots of
stochastic paradoxes. Solving different problems connected to those games leads to
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1 TEACHING PROCESS

proper understanding of elementary characteristics and acquiring correct intuitions.
Thanks to the paradoxes occurring in those games we can set didactic situations leading
to didactic reflections both tor students and teachers. Although probability is present
on the elementary and secondary stage of education of math teachers, mathematicians
often lack specific tools for teaching probability. Even well trained math teachers,
having broad knowledge of mathematics, usually need some additional professional
training connected to teaching probability. General rules of teaching which are usually
effective in other branches of mathematics are not necessarily as effective in teaching
probability theory. This situation is even a greater challenge for primary school teachers.
Although teachers do not need a very high level of mathematical knowledge, it is
necessary for them to understand the basic notions of mathematics they teach at schools
thoroughly, including deep understanding of relations and connections among different
aspects of that knowledge (see [23]). The additional elements that are important in the
professional teachers’ knowledge are described in [1]:

a) epistemology: a reflection on meanings of different notions, like different meanings
of probability (see [2]);

b) learning: foreseeing problems in the student’s learning, mistakes, obstacles and
strategies;

c) didactical means and methods: experience in good selection of examples and di-
dactic situations; ability to analyze the textbooks, curricula and other documents
critically; ability to adapt the statistics to different levels of education;

d) ability to engage the students in work and make them interested in what they
do; taking their beliefs and attitudes into consideration;

e) interactions: ability to create effective communication in the classroom and using
rating as a means of instructing students.

Classical paradoxes play a great role in teaching probability. Because of them we
can organize some didactical activities for the math teachers. The aim of these activities
is to provoke their reflection on the basic probabilistic notions. These activities also
help the teachers understand the students’ obstacles and difficulties in understanding
probability and they allow them to expand their own methodological and didactical
base.

Introduction of the stochastic graph into the probability teaching process is to
create, develop and shape those correct stochastic intuitions in a proper way. Simul-
taneously, we build this process by introducing a specific kind of chance experiments
and problems generated by them.
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1 TEACHING PROCESS

1.4 Penney’s game and a stochastic graph

There are two possible results of a coin toss. We shall code them in such a way:
o— the result will be heads and r -– the result will be tails. We shall call the r result a
success and the o result a failure. The result of k coin tosses, which is a k-arrangement
of {o, r} set we shall call a series of successes and failures, in short – a series of k length.
Let a and b be a defined series of successes and failures of k length. Repeating a

coin toss as many times as needed to get k trial result make the a or b series is called
waiting for the a or b series and marked as δa−b. Let us connect the events of:
A={waiting δa−b will finish with the a series},
B={waiting δa−b will finish with the b series}
with the δa−b chance experiment.
Let us mark the A event as {. . . a} and its probability as P (. . . a). The B event

shall be marked as {. . . b} and its probability as P (. . . b).
In a short article [25] Walter Penney discusses repeating a coin toss as many times

as needed to get three times heads or a heads-tails-heads series. Let δooo−oro mean the
described chance experiment. Penney suggests a lot game for two players. In the game
the δooo−oro experiment is conducted (it is not important who tosses the coin). One of
the players wins if the experiment ends up with the ooo result, and the other player
wins when the experiment ends with the oro result. The game described above we shall
call gooo−oro . The fact that the ooo and oro series are equally possible to happen would
suggest that the game is fair. But the probability that the waiting δooo−oro will end
up with the oro series is 0,6, while the probability that it will end up with the ooo
series is 0,4. Penney finds the probabilities on a way of particular reasoning (see [27],
p. 415) and he does not try to hide his being surprised by the fact that the game is
not fair. The oro series gives the player a bigger chance to win that the ooo one. This
is the interpretation of the results and the calculation on the real-life ground. So the
oro series is called better than the ooo one.
The problem of the fairness of chance games in case of waiting for other pairs of

series of heads and tails – those are called Penney’s games – the issues connected to
the paradox characteristics of the success-failure series in waiting for one of them to
occur, as well as the problem of time needed for such waiting (meant as a period of time
taken by the game, when time is measured with the number of coin tosses executed)
are called Penney’s problems in mathematical literature. Only in case of some pairs of
heads and tails series the Penney’s game is fair. Such series are called equally good.
Some of the results of research on the Penney’s problems are gathered in [9] mono-

graph and [30], [11], [12], [13], [14], [15], [19] and [20] articles.
A tool for examining the countable probabilistic spaces for waitings for success-

failure series is a stochastic graph. Such a waiting for a series of successes and failures
is a chance experiment of a random number of stages.
The research on the probabilistic space for the waiting for one of many success-

failure series may be brought down to searching for the probabilities of reaching each
of the absorbing levels. Waiting for a success-failure series is often interpreted as a
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1 TEACHING PROCESS

Fig. 1: Stochastic graph - game grr−or

homogeneous Markov’s chain with the non-empty set of absorbing stages (see [17])
and it is suggested to use an iconic representation, along with the algebraical one,
that is a stochastic graph. Traditionally, such calculations are based on sequences and
differential equations. The essence of argumentations based on the stochastic graph is,
among others, a reduction of cycles and loops on the graph (we call them reductions of
the graph), or transition from a graph with unlimited number of passages to a limited-
passage graph (see [16]). It is a development of methods and tools suggested long ago
by Arthur Engel in [3], [4] and [5] (see also [18]).
The stages of a homogeneous Markov’s chain can be interpreted as points on a plain

and called knots. The knot that represents the beginning stage is called starting knot.
Each knot representing an absorbing stage is called edge knot. If the probability of
getting from a j stage to a k stage in one step is positive, then we connect those knots
with the oriented subsection of a line or curve and we mark that subsection k. We call
that subsection an arc. A graph constructed in such a way is an iconic representation
of a Markov’s chain.
At the beginning (before conducting the first stage of experiment) we place a pawn

in the starting knot of the graph. If a stage ends with the j result we move the pawn
along the j arc. The route of the pawn ends when it gets to an edge knot, that is at
the rim of the graph (see [21]). Picture 1 shows a stochastic graph being a board of the
gor−rr game.
If the pawn gets to the o knot at any stage of the game, it is certain (the probability

equals 1) that it will get to the knot (finish) or – that is the player waiting for this
series wins. For the pawn getting to the o knot the heads must be the result of first or
second toss, so the probability of this event is 0,5+0,25=0,75. The pawn gets to the rr
knot only if the first and second toss result with tails, then the other player wins, and
this happens with the probability of 0,25.
It is just one example of elementary, simple, but very elegant and making a great

impression reasoning based on a stochastic graph. There are lots of such examples can
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2 PROBABILITY SPACES

be found in the quoted literature.
A natural generalization of discussed problems is replacing a coin toss with any

chance experiment having two possible results of non-equal probability (that is a Ber-
noulli’s trial) or a chance experiment having more than two results. Then we can discuss
the series of successes and failures or series of colors (flags).

1.5 The Waitings for flags computer program

An interesting complementation of the discussed issues is a computer program called
Waitings for flags (file cnf.exe), which allows us to gather statistical data in a quick
and easy way and so formulate different assumptions on their basis.
The program has its limitations:

1) possible number of series: 1 to 4;

2) the number of results in a single experiment: 2 to 12;

3) the probability of each result in a single experiment: measurable, given with
maximum accuracy to 12 decimal places.

After inserting the number of results in a single experiment (the number of results
for a n-trial) their labels appear. They are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. The
labels can be replaced with other available on the keyboard. We enter the probability
of each result next to its label. To check if the probabilities sum up to 1 we shall click
the TOTAL button. When we click the classical distribution button the program
will automatically insert the same probability in every window. After setting the result
labels in a single experiment we enter the number of color series (flags) and, in appe-
aring windows, the color series coded with the result labels for a single experiment.
When all the data is entered we click the READY button. The probabilities we look for
and estimated time of the experiment (game) will show in a new window. In the right
upper corner there is a Simulation window. After inserting the number of experi-
ments we wish to simulate and clicking START a new window opens. It is a protocol of
conducting a required number of experiments. In the new window, in its upper part,
there is a number of waitings resulting with specified series and their frequencies. We
can simulate up to 1000 experiments.

2 Probability in Probability Spaces Connected with Generalised

Penney’s Games

2.1 Discrete probability space and probabiliy in such a space

Let Ω be an arbitrary at least two-element and at most countable set. A non-negative
function p : Ω→ R which fulfils the condition
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2 PROBABILITY SPACES

∑

ω∈Ω

p(ω) = 1,

is called a probability distribution on the set Ω.
Let Z = 2Ω. Define the function P on the set Z in the following way:

P (A) =



















0, if A = ∅,

p(ω), if A = {ω},
∑

ω∈A

p(ω), if A is a set with at least two elements,

It is not difficult to show that the function P fulfils the conditions of the axiomatic
definition of probability. Therefore the triple (Ω,Z, P ) is a probability space. It is called
a discrete probability space due to the cardinality of Ω.
The elements of the family Z are called events and the value of the function P for

a set A from the family Z is called the probability of event A. In order to define a
discrete probability space (Ω,Z, P ) it is necessary and sufficient to define a probability
distribution p on Ω. For this reason the pair (Ω, p) may also be called a descrete
probability space. In the following considerations the construction of a probability space
will be understood as the construction of a pair (Ω, p) in which Ω is a set containing
at least two elements and at most countable and p is a probability distribution on Ω.

2.2 Series of successes and failures, waiting for one of the two

series and its probability model

A random experiment with two possible results is called a Bernoulli trial or a trial if
the probabilities of these two results are positive. Let one of them be denoted by 1 and
called a success while the other is denoted by 0 and called a failure. Let us also denote
the probabilities of the success and failure by u and v respectively. Therefore 0 < u < 1
i u+ v = 1.
Every result of the experiment in which a particular Bernoulli trial is performed m

times (i.e. the result of a Bernoulli scheme of m trials) is called a series of successes and
failures. Number m is called the length of the series. A series of successes and failures
of length m will be represented as the m-arrangement of the set {0, 1}.
Let a and b be fixed series of successes and failures of the length m. The random

experiment of repeating the given trial until the results of the last m trials create series
a or series b is called waiting for one of the two series a or b and is denoted by da−b.
Let Ωa−b be the set of such arrangements of {0, 1} with at most m terms in which

the last m terms create the series a or b, while neither the series a nor the series b is
created by any previous subsequence of consecutive m terms. The set Ωa−b consists of
all results of the random experiment da−b. For ω ∈ Ωa−b let j(ω) stand for the number
of the terms of the sequence ω which are equal to 1. Let the symbol |ω| denote the
length of the sequence ω, i.e. the number of its terms. Define the function pa−b on Ωa−b
by the following formula:

pa−b(ω) = u
j(ω) · v|ω|−j(ω) dla ω ∈ Ωa−b.
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2 PROBABILITY SPACES

The function pa−b is a probability distribution on the set Ωa−b, so the pair (Ωa−b, pa−b)
is a probability space. It is called the probability model of the random experiment
da−b. The set Ωa−b is not finite but it is countable, the pair (Ωa−b, pa−b) is an infinite
(countable) probability space.

2.3 Some generalisation of Penney’s game onto a series of

successes and failures

Let a i b be fixed series of successes and failures of length m. Two players Ga and Gb
take part in the game. A particular Bernoulli trial is repeated until the results of last
m trials create the series a - in which case the player Ga wins - or the series b, which
means that the player Gb is a winner. Let us denote the game described above by ga−b.
It is a generalisation of the game suggested in 1969 by Walter Penney for u = 1

2
(see

W. Penney, Problem 95: Penney-Ante, Journal of Recreational Mathematics 7-1974,
p. 321).
In this game the random experiment da−b is performed, modelled by the probability

space (Ωa−b, pa−b). Let {a ≺ b} denote the event {the series a appears before the series
b} and let P (a ≺ b) stand for its probability.

2.4 Stochastic graph and probability space induced by it

While repeating the trials it is necessary to continuously control the result of the last m
trials in order to decide whether the game is over and who is the winner. This procedure
may be rationalised by interpreting the course of the experiment da−b as wandering of
a pawn on a stochastic graph. This interpretation refers to the idea of simulation of
the course of homogeneous Markov chains presented by Arthur Engel in [?].
Waiting for one of the series of successes and failures is a homogeneous Markov

chain. Let us consider the stochastic graph of this Markov chain. Let Ω∗ be the set
of all paths on this graph. To each path let us assign the product of numbers related
to the consecutive edges of this path. This product is called the weight of the path.
The function which to each path assigns its weight will be denoted by p∗. The function
p∗ is a probability distribution on Ω∗, so the pair (Ω∗, p∗) is a probability space. It is
called the space induced by the stochastic graph. All the subsequent calculations and
reasonings are conducted in such a probability space induced by a stochastic graph.
If (Ωa−b, pa−b) is the probability model of the random experiment da−b defined above

and (Ω∗, p∗) is a probability space induced by the stochastic graph of the random
experiment da−b, then both spaces are isomorphic.

2.5 Argumentation in countable probability spaces based on a

stochastic graph

Let us consider the game g01−00. In this game the random experiment d01−00 is perfor-
med.
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2 PROBABILITY SPACES

Let the pair (Ω01−00, p01−00) be the probability model for this experiment. In the
probability space (Ω01−00, p01−00) the probability P (01≺ 00) is equal to the sum of a
number series. The following paragraphs contain an alternative method of calculating
this sum. Figure 6.0.1 presents the stochastic graph of the experiment d01−00. At the
same time it is the game-board for game g01−00).

s 0

00

01
v

v

u

u

The stochastic graph of the game g01−00

From the symmetry of the graph it follows that P (01≺ 00) = u and P (00≺ 01) = v.
Both players wait for the failure to appear. It means that the trial performed directly
after the first failure appears settles the question of who wins the game.
If 0(n−1)1 denotes the series consisting of (n − 1) consecutive zeros with 1 as the last
term and if 0n denotes the series consisting of zeros only, then generalising the above
reasoning we obtain

P (0(n−1)1≺ 0n0) = u oraz P (0n0≺ 0(n−1)1) = v.

Let us now consider the game g011−110. Let (Ω011−110, p011−110) be the probability
model of the random experiment d011−110 conducted in this game.

s 1 11 110

0

01

011

u u v

v

u v

u

v

u

v

The stochastic graph of the game g011−110

Figure 6.0.2 presents the stochastic graph of the experiment d011−110. Let us notice
that under the interpretation of the course of the experiment d011−110 as the wandering
of a pawn on the graph presented in fig.6.0.2 whenever the pawn arrives at the node 0 ,
with probability equal to 1 the experiment will (sooner or later) end with the series 011
. If the pawn arrives at the node 11 , then with probability equal to 1 the experiment
will (sooner or later) end with the series 110. The probability of arriving at the node
0 is equal to v + uv, so P (011≺ 110) = v + uv. Similarly, P (110≺ 011) = v2.
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2 PROBABILITY SPACES

The above reasoning employs some reductions of a graph (see [?], p. 299-302), by
which we have passed from the countable probability space (Ω011−110, p011−110), in which
P (011≺ 110) and P (110≺ 011) are calculated, to a finite space.

Let us consider the game g001−011. Let (Ω001−011, p001−011) be the probability model
of the random experiment d001−011 conducted in this game. Figure ?? presents the
stochastic graph of the random experiment d001−011.

s 0 00 001

01

011

v v u

u v
u

v

u

The stochastic graph of the game g001−011

The node 0 may be treated as the start node (the probability of arriving at any of
the finishes from the start is equal to the probability of arriving at these finishes from
the node 0 ). The series 001 will appear before the series 011, if the experiment comes

to the stage 00 . Let us denote P (001≺ 011) = x. The graph implies that x = v+uvx,
so x = v

u2−u+1
.

Let us consider the game g000−011. Let (Ω000−011, p000−011) be the probability model
of the random experiment d000−011 conducted in this game. Figure ?? presents the
stochastic graph of the random experiment d000−011.

s 0 01 011

00

000

v u

v

v

u

u

v

u

The stochastic graph of the game g000−011

Let x = P (011≺ 000). In the space induced by the graph x is the probability of
arriving at node the 011 and therefore is the sum of the weights of all paths ending

with the node 011 . Referring to the graph presented in figure ?? we obtain x =

u2 + vu2 + (uv + uv2)x, which implies that x = u2(2−u)
−u3+3u2−2u+1

.
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3 NONTRANSITIVE RELATION

The above considerations illustrate how studying countable probability spaces may
be reduced to studying finite spaces by applying Engel’s graph to interpretation of the
course of waiting for one of the two series of successes and failures.
Probabilities of events in the considered probability spaces are for the most part

the sums of number series. Finding these probabilities with methods presented in this
paper gives at the same time probabilistic methods of calculating sums of some number
series.
The present paper presents unknown issues connected with generalisation of Walter

Penney’s games. Considerations referring to the fairness of the game ga−b with fixed
series of successes and failures leads to studying the properties of the function f(u) =
P (a ≺ b) on the interval (0, 1). The issues presented in the paper illustrate the principle
of integration in mathematics teaching.

3 On some nontransitive relation

Every result of k-tuple toss-up is coded by an arrangement of k out of
the set {H, T}. The element number j of this arrangement is the code
of the j-th toss-up result.

Definition 1 Every result of k-tuple toss-up, where k ∈ N1, and therefore
every arrangement of k out of the set {H, T} is called the series of heads
and tails. Number k will be called the length of series. H

Definition 2 Let α, β be established series of heads and tails of length k
and let α 6= β. We are repeating a toss-up so long, until:
– either the results of k closing toss-ups create the series α,
– or the results of k closing toss-ups create the series β.

Such a random experiment is called awaiting for one of series α, β and
is denoted by δα−β. H

Let α, β be series of heads and tails of the length k that is an ar-

rangement of k out of the set {H, T}. The awaiting δα−β is a random
experiment of random number of stages. Every its result is at least an

arrangement of k out of the set {H, T} such that a subsequence of k
consecutive closing elements of this arrangement is either series α or
series β and none subsequence of k consecutive preceding elements of
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3 NONTRANSITIVE RELATION

this arrangement forms any of these series. Let Ωα−β denotes the set of

results of the awaiting δα−β. If ω ∈ Ωα−β and ω is n-elements sequence,
then ω is a special result of n-tuple toss-up. The probability of this re-

sult is therefore equal to
1

2n
or

(

1

2

)n

(compare [?], p. 34). The function

pα−β : Ωα−β −→ R is defined by the formula

pα−β(ω) =

(

1

2

)|ω|

for ω ∈ Ωα−β,

where |ω| denotes the number of elements in the sequence ω, it assigns
the probability to any result of the experiment δα−β and at the same time
it is a probability distribution on the set Ωα−β. The pair (Ωα−β, pα−β) is

a probability space. This is a model of awaiting for one of the series α, β
(compare [?], p. 41).

We will connect two opposite events with the experiment δα−β:

A = { awaiting δα−β will close with getting series α },

B = { awaiting δα−β will close with getting series β },

which will be denoted as following: A = {α ≺ β} and B = {β ≺ α}. The
probabilities of events {α ≺ β} and {β ≺ α} we denote appropriately by
P (α ≺ β) and P (β ≺ α).

Definition 3 If in the probability space (Ωα−β, pα−β) there is

P (α ≺ β) > P (β ≺ α),

then series α is called better than series β and is denoted as α≫ β. H

Definition 4 The end of the length j of the ”heads and tails series” α is

called the subsequence of j consecutive closing elements of the sequence
α. The beginning of the length j of the ”heads and tail series” α is called

the subsequence of j consecutive beginning elements of the sequence α.
H

To state which of the ”heads and tails series” is better, one can apply
among others Conway algorithm.
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3 NONTRANSITIVE RELATION

Theorem 5 (Conway algorithm) Let α, β be the series of head and tails

of the length k. Let us assume that

α ⋄ β =
k
∑

j=1

2j−1

for any j meeting such a condition that the end of the length j belonging
to the series α is equal to the beginning of the length j belonging to the
series β. Then

P (α ≺ β)

P (β ≺ α)
=
β ⋄ β − β ⋄ α

α ⋄ α− α ⋄ β
. �

This algorithm was given by John H. Conway, and its evidence was
published in 1981 by Leo J. Guibas and Andrew M. Odlyzko (compa-

re [8], p. 183-190).

Let α = THHTTH, β = HTTHTH. If we want to calculate the

sum α ⋄ β we have to compare the α-series ends of the length j ∈
{1, 2, 3, 4, 5, 6} with the beginnings of β-series of the same length.
Here we have

THHTTH THHTTH THHTTH THHTTH THHTTH THHTTH

HTTHTH HTTHTH HTTHTH HTTHTH HTTHTH HTTHTH

20 0 0 23 0 0

We receive then

α ⋄ β = 20 + 23 = 9,

because only for j ∈ {1, 4} the end of α-series of the length j is equal
to the beginning of β-series of the length j. By analogy we calculate
the remaining sums

α ⋄ α = 25 + 21 = 34, β ⋄ α = 21 = 2, β ⋄ β = 25 + 20 = 33.
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3 NONTRANSITIVE RELATION

We receive then
P (α ≺ β)

P (β ≺ α)
=
33− 2

34− 9
=
31

25
.

Because the events {α ≺ β} and {β ≺ α} are opposite, then

P (α ≺ β) =
31

56
and P (β ≺ α) =

25

56
. �

It was shown among others in the work [?] that - paradoxically - the

relation ≫ in the set {H, T}3 is not a transitive relation. Because we
have

THH ≫ HHT, HHT ≫ HTT and HTT ≫ THH.

Farther we will demonstrate that the relation≫ is transitive in none of
the sets {H, T}k, k  3.

Definition 6 (ANTI-OPTIMAL SERIES) Let α be an established series
of heads and tails an let |α| = k, k  3. Let us consider the set

Aα = {β : |β| = k ∧ α 6= β}.

The series α̂, meeting the condition

∀β∈AαP (α̂ ≺ α)  P (β ≺ α),

is called the anti-optimal series for the series α. H

Let us assume that α = a1a2...ak ∈ {H, T}
k, k  3. Let us accept the

following denotations

αH = Ha1a2...ak−1 and αT = Ta1a2...ak−1.

Theorem 7 If α is the series of heads and tails, then

α̂ = αH or α̂ = αT . �

The proof of this theorem was given by L. Guibas and A. M. Odlyzko
(compare [8], p. 183-208).
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3 NONTRANSITIVE RELATION

Theorem 8 For every series of heads and tails it is

P (αH ≺ α) 6= P (αT ≺ α). �

It results from the above statements that for any series α there exist

exactly one anti-optimal series. This is one of the series αH or αT . Finally
we receive

Theorem 9 For every series of heads and tails it is

P (α ≺ α̂) < P (α̂ ≺ α),

then the series anti-optimal to series α is the series better than series

α. �

The direct conclusion from the Theorem 4 is

Theorem 10 It does not exist such k  3 that the relation≫ defined in
the set {H, T}k is a transitive relation. �

Proof. Let α ∈ {H, T}k, where k  3, be any established series of heads
and tails. Let us accept the following convention: α̂ = α1, α̂1 = α2,
α̂2 = α3, etc. Of course it is

α2 ≫ α1 and α1 ≫ α.

If ∼ (α2 ≫ α), then the relation≫ is not transitive. But if α2 ≫ α, then
we consider series α3 and in this case we have

α3 ≫ α2, α2 ≫ α1 oraz α1 ≫ α.

If∼ (α3 ≫ α ∨ α3 ≫ α1), then the relation≫ is not transitive. If α3 ≫ α
i α3 ≫ α1, then we consider series α4 etc. The set {H, T}k is finite, so the
above procedure will lead us after all to the conclusion that the relation
≫ is not transitive. ▽

The relation≫ appears in the context of random experiment carried
out in a game suggested in 1974 by Walter Penney (see [?]). Two players:
GA and GB are participating in the game. At the beginning of the game,
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4 BETTER VS. LONGER SERIES

the players choose series for themselves from the set {H, T}k, where
k  3 is an earlier established series’ length. Player GA is choosing his
series α as first. Next, the player GB, who is knowing series chosen by the
player GA, chooses his series β ∈ {H, T}k \α. Then the experiment δα−β
is carried out and if an event {α ≺ β} will happen, then the player GA
is winning, but if an event {β ≺ α} will happen, then the player GB is
winning. It’s obvious that a bigger chance to win has this player, whose

series is better. It is a paradox, that the player choosing his series as a
second player, has - after appropriate choice of series - a greater chance

to win in the game. Therefore a priority right at choice of series is not
a privilege. Since the relation ≫ is not transitive, then - paradoxically
- from the fact that the player GA has greater chance to win than the
player GB, and the player GB has greater chance to win than the player
GC it does not result, that in the game with participation of two players

GA andGC , the playerGA would have a greater chance to win (regardless
of what lengths of series do the players choose).

4 Better vs. longer series of heads and tails

Definition 11 Let k ∈ N and k  1. Each result of the k-fold variation
of the {H, T} set, which is each result of the k-fold coin toss, we shall
call a series of heads and tails. We shall mark its length as |α|.

Definition 12 Let α and β be series of heads and tails. We can say that
the seria α series is not included in the β series if it is not the subsequence

of the successive elements of the β series.

Definition 13 Let α and β be series of heads and tails. Let the α series
be k long and the β series be l long. Let us also assume that the α series
is not included in the β one. We repeat a coin toss so long that we get

k last results forming the α series or l last results forming the β series.
We call this experiment waiting for one of the two stated series of results

and mark it as δα−β (see [??], 406-415).

Let us consider a game of two players, Gα and Gβ. In the game they
conduct the δα−β experiment. If the waiting finishes with the α series -
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4 BETTER VS. LONGER SERIES

the player Gα wins, and if it finishes with the β series - the Gβ player

wins. We shall call this game the Penney’s game1 and mark it as gα−β.
Let us consider the waiting of δα−β. The ω sequence having its ele-

ments from the set of {H, T} is a result of the δα−β experiment if it
fulfills the following conditions:

– the subsequence of k last results forms the α series or the subsequ-

ence of l last results forms the β series, and

– no subsequence of k or l successive results forms the α or β series.

We mark the set of all such sequences (results of the δα−β experiment)

as Ωα−β.

If the ω result of the δα−β experiment is an n-element sequence, it is a
specific result of an n-fold coin toss. Its probability equals

(

1
2

)n
.

Let pα−β be a function of

pα−β(ω) =

(

1

2

)|ω|

for ω ∈ Ωα−β,

and |ω| be the ω sequence length (number of elements). This function
is the distribution of probability in the Ωα−β set, and the (Ωα−β, pα−β)
pair is a probabilistic model of the δα−β waiting.

Let us state two opposite events in the space of (Ωα−β, pα−β):

A = {the δα−β waiting gives the α series at the end},

B = {the δα−β waiting gives the β series at the end}.

Definition 14 If P (A) = P (B), we call the α and β series equally good
and mark them as α ≈ β.

Definition 15 If P (A) > P (B), we call the α series better than the β
series and mark them as α≫ β.

In the game of gα−β we conduct the δα−β experiment. If the A event

occurs, the Gα player wins. If the experiment ends with the B event, the
game winner is the Gβ player. Stating the probability of the A and B

1 Proposed by Walter Penney, see [??];
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4 BETTER VS. LONGER SERIES

events we can also determine the fairness of the Penney’s game. If the

α and β series are equally good, the players have equal chance to win.
The gα−β game is fair. If one of the series is better than the other, the

players’ chances to win are not equal and the game is not fair.

Let δα−β be waiting for one of two series of heads and tails and k and

l be lengths of α and β series. Let m ∈ {1, 2, 3, . . . , min{k, l}}, α(m),
β(m) mean respectively sequences of m first elements of α and β series

and α(m), β(m) mean respectively m last elements of the α and β series.
Let us define the sets

Aα = {m : α(m) = α
(m)}, Aβ = {m : α(m) = β

(m)},

Bβ = {m : β(m) = β
(m)}, Bα = {m : β(m) = α

(m)},

and the following sums

α : α =
∑

j∈Aα

2j, α : β =
∑

j∈Aβ

2j,

β : β =
∑

j∈Bβ

2j, β : α =
∑

j∈Bα

2j.

Theorem 16 In the probabilistic space of δα−β the equation

P (B)

P (A)
=
α : α− α : β

β : β − β : α
,

called the Conway’s equation is true2.

Remark 17 From the preceding equation we can tell that if

µ :=
α : α− α : β

β : β − β : α
,

than
µ > 1⇔ β ≫ α,

µ = 1⇔ α ≈ β,

µ < 1⇔ α≫ β.
2 Discovered by John Horton Conway; the proof of its correctness is shown in [??];
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4 BETTER VS. LONGER SERIES

Let α = HTHTHT and β = HHTHTH. Let us notice that α(1) =

T 6= H = α(1), so 1 /∈ Aα. Analogously

HTHTHT

HTHTHT







⇒ 2 ∈ Aα,
HTHTHT

HTHTHT







⇒ 3 /∈ Aα,

HTHTHT

HTHTHT







⇒ 4 ∈ Aα,
HTHTHT

HTHTHT







⇒ 5 /∈ Aα,

HTHTHT

HTHTHT







⇒ 6 ∈ Aα.

Therefore
Aα = {2, 4, 6},

so
α : α = 22 + 24 + 26 = 84.

In the same way we come to the following

α : β = 0, β : β = 66, β : α = 42,

so
α : α− α : β

β : β − β : α
=
84− 0

66− 42
=
21

6
> 1.

ThereforeHHTHTH ≫ HTHTHT , and this means that the gHTHTHT−HHTHTH
is not a fair one.

Let δα−β be waiting for one of the α or β series. Let us assume that
|α| > |β|. Intuitionally we can presume that the β series, being shorter
than the α series, is a better one.

Let us consider two series: α = HHTT...TT and β = TT...TT . The
series are such that |α| = |β|+ 1 = k + 1, where k  2. In this case

α : α = 2k+1, α : β =
k−1
∑

j=1

2j,

β : β =
k
∑

j=1

2j, β : α = 0.
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4 BETTER VS. LONGER SERIES

From the Conway’s equation we know that

P (A)

P (B)
=
β : β − β : α

α : α− α : β
=

k
∑

j=1

2j

2k+1 −
k−1
∑

j=1

2j
.

Let us notice that
n
∑

j=1

2j is a sum of n first elements of the geometrical

sequence which has the first element of 2 and the quotient of 2, so

n
∑

j=1

2j = 2
1− 2n

1− 2
= 2n+1 − 2. (4.0.1)

Therefore

k
∑

j=1

2j

2k+1 −
k−1
∑

j=1

2j
=
2 · 2k − 2

2 · 2k − 2k + 2
=
1− 12k
1
2 +

1
2k
>
1
1
2

,

and
P (A)

P (B)
> 2,

so α≫ β even if the α series is longer than the β one.

If we narrow our consideration to pairs of series that differ by more than

one element in length, we can easily see that the shorter series is a better
one.

Theorem 18 Let δα−β be waiting for one of the α or β series of heads

and tails which lengths fulfill the condition |α|  |β| + 2. Then the β
series is better than the α series.

Proof. Let the α and β be series of heads and tails and |α| = k, |β| = l.
Let m  2 be such a number that k = l+m. As the series cannot include
each other, we have

{k} ⊂ Aα ⊂ {1, 2, 3, ..., k}, Aβ ⊂ {1, 2, 3, ..., l− 1},

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect
those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor
EACEA can be held responsible for them.

22



5 WAITING FOR A SERIES

{k} ⊂ Bβ ⊂ {1, 2, 3, ..., l}, Bα ⊂ {1, 2, 3, ..., l− 1},

which lead us to the following approximations:

2k ¬ α : α ¬
k
∑

j=1

2j, 0 ¬ α : β ¬
l−1
∑

j=1

2j

2l ¬ β : β ¬
l
∑

j=1

2j, 0 ¬ α : β ¬
l−1
∑

j=1

2j.

Then

β : β − β : α

α : α− α : β
¬

l
∑

j=1

2j − 0

2k −
l−1
∑

j=1

2j
.

From (4.0.1) we get

l
∑

j=1

2j

2k −
l−1
∑

j=1

2j
=

2 · 2l − 2

2m+l − (2l − 2)
<

2 · 2l

2m · 2l − (2l − 2)
=

2

2m − (1− 22l )
<
2

4− 1
,

therefore
β : β − β : α

α : α− α : β
< 1.

Considering the remark 17 we get β ≫ α.

5 Waiting for a series of colours, and the properties of certain

relations in a set of these series

Let us consider an urn U containing white, black and green balls. There

are three possible results of sampling a ball from this urn:
b: the sampled ball will be white,

c: the sampled ball will be black,
z: the sampled ball will be green.

Let p(x) denotes the probability that the result of the sampling is x,
x ∈ {b, c, z}. Let us assume, that
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5 WAITING FOR A SERIES

p(b) = u > 0, p(c) = v > 0 i p(z) = w = 1− u− v > 0.

The result of a composed m-times sampling of a ball from the urn U
with return is an m-arrangement of the set {b, c, z} (j-th term is a result
of j-th sampling). Every such result we call the series of colours of length
m.
Let α1 and α2 be the settled series of colours of length m. Sampling

from the urn U as long as the result of m last samplings will create a
series α1 or a series α2 we will call awaiting one of the series α1, α2 and

we will denote it by dα1−α2. Let us connect the following events with the
experiment dα1−α2:

{. . . α1} = {awaiting dα1−α2 will be finished by obtaining the series α1},
{. . . α2} = {awaiting dα1−α2 will be finished by obtaining the series α2}.
If P (. . . α1) > P (. . . α2), we say that the series α1 is better than the

series α2 and we denote it by α1 ≫ α2. If P (. . . α1) = P (. . . α2), we say
that the series α1 and α2 are equally good and we denote it α1 ≈ α2.
There is P (. . . α1) = 1 − P (. . . α2), therefor P (. . . α1) is the function of
two variables u and v. Let us remark, that

α1 ≈ α2 ⇐⇒ P (. . . α1) =
1
2, α1 ≫ α2 ⇐⇒ P (. . . α1) >

1
2 .

The following problems are the subject of this paper:

– for which values of the u and v parameters there is α1 ≈ α2;
– for which values there is α1 ≫ α2 and for which there is α2 ≫ α1.
The motivation for these calculations is the special sampling game.

A random experiment dα1−α2 is carried out in the game with two players
G1 and G2 and if the event {. . . αj} takes place, the player Gj wins
(j = 1, 2). The described sampling game is a kind of generalisation of
the game proposed by Walter Penny in [26].

The events {. . . αj} and their probabilities are considered here in the
model of the experiment dα1−α2. This is the probability space (Ωα1−α2, pα1−α2),

where:
– Ωα1−α2 is a set of arrangements of terms from the set {b, c, z}, and
the subsequence of last k terms is a series α1 or a series α2 and no

subsequence k previous elements is not a series α1 nor α2;
– pα1−α2 is a function defined by the formula:
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5 WAITING FOR A SERIES

pα1−α2(ω) = u
lb · vlc · wlz dla ω ∈ Ωα1−α2,

where lx denotes the number of terms equal to x in the sequence ω and
x ∈ {b, c, z}, and the probability in this space is the function P defined
by the formula:

P (A) =
∑

ω∈A

pα1−α2(ω) dla A ⊂ Ωα1−α2.

Generally the probabilities of events in the space of probability
(Ωα1−α2, pα1−α2) are the sums of series. The other, simpler tools of calcu-

lation are proposed in this paper.
The experiment dα1−α2 is the uniform Markow string if it is being

analysed from the point of view of the state of the waiting after the

subsequent sampling of the ball (see [27]). This is Markow string of two
absorbing states. Each of these states has its own stochastic graph (see

[3]).
Let us consider the random experiment dbc−bb and the events:

{. . . bc} = {the waiting dbc−bb will be finished by obtaining the series bc},
{. . . bb} = {the waiting dbc−bb will be finished by obtaining the series bb}.

The stochastic graph of the random experiment is presented in the
Fig. 1.

s b

bc

bb

v

u
w

u

v + w

Fig. 1

The pattern of the random experiment dbc−bb may be interpreted as
a random walk of a pawn on a stochastic graph like in Fig. 1. At the

beginning we place the pawn on the place start and then we move it along
the edge with associated number u, if the sampling was finished by the

white ball, along the edge with associated number v, if the sampling was
finished by the black ball or along the edge with associated number w, if

the sampling was finished by the green ball. The experiment is finished
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5 WAITING FOR A SERIES

if the pawn is at the place bc (in this case the event {. . . bc} took place)
or if it is at the place bb (in this case the event {. . . bb} took place).
Any such string of edges that the start point of the first one is at

start and the end of the last one is bc or bb and at the same time the

start point of any edge is the end point of the previous edge, is called
the track on the graph. There is a bijection from the set of tracks in

the graph onto the set Ωbc−bb maintaining the probability. Graph in the
Fig. 2a is the sub-graph of the graph from the Fig. 1. This sub-graph
reduces itself to the graph from Fig. 2b. This reduction is based on the

fact that there is the probability u
1−(v+w) i.e. probability equal 1 that the

pawn will come from start to the place b .

s b
w

u

v + w

a)

s b
w

1
b)

Fig. 2

Therefore the stochastic graph of the random experiment dbc−bb in
Fig. 1 reduces itself to the graph presented in Fig. 3.

s b

bc

bb

v

u
w

1

Fig. 3

According to the above interpretation (and taking into account the

reduction of the graph) P (. . . x) is the probability of coming from start
to the place x (x ∈ {bc, bb}) in random walking across the graph in
Fig. 3. Therefore it is:

P (. . . bc) = v +w · v +w2 · v +w3 · v + . . .=v +
∞
∑

k=1

wk · v=v + w·v
1−w=

v
u+v
.

Analogously we have:

P (. . . bb) = u+w · u+w2 · u+w3 · u+ . . .=u+
∞
∑

k=1

wk · u=u+ w·u1−w=
u
u+v .
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5 WAITING FOR A SERIES

Let P (. . . bc) = f(u, v). Therefore it is P (. . . bb) = 1 − f(u, v). The
domain of the function f is a set of the pairs of numbers (u, v) satisfying
the following condistion:

u > 0, v > 0 oraz u+ v < 1 (here and below u and v are

the rational numbers).
If we interpret the pair of numbers (u, v) as a point in Cartesian

co-ordinates, the domain of the function f is a figure bounded by the
co-ordinate axes and the line v = 1− u (In the Fig. 4 this is the triangle
ABC).

v

u
1

C

A B

D

Fig. 4

Let us note, that:

P (. . . bc) = P (. . . bb)⇐⇒ P (. . . bc) = 1
2
⇐⇒ v

u+v
= u
u+v
,

therefore bc ≈ bb⇐⇒ [u = v ∧ u, v ∈ (0, 12)].
The set of the points satisfying this condition in the Fig. 4 is the

segment AD.
Analogously

P (. . . bc) > P (. . . bb)⇐⇒ P (. . . bc) > 1
2
⇐⇒ v

u+v
> u
u+v
,

therefore bc≫ bb⇐⇒ [v ∈ (0, 12) ∧ v < u < 1− v].
In the Fig. 4 the set of the points satisfying this condition is the

triangle ABD.
We have also:

P (. . . bc) < P (. . . bb)⇐⇒ P (. . . bc) < 12 ⇐⇒
v
u+v <

u
u+v ,
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6 AWAITING A SERIES

therefore bb≫ bc⇐⇒ [u ∈ (0, 12) ∧ u < v < 1− u].
In the Fig. 4 the set of the points satisfying this condition is the

triangle ADC.

The subject of this work are peculiar arguments concerning the pro-
bability in some countable probabilistic spaces.

6 Awaiting the series of colours - stochastic graph as the means

of mathematical treatment and argumentation

The construction of a probabilistic space as a model of a certain multi-
stage sampling experiment (see [27], pages 24–25) is a form of mathema-

tical treatment. The argumentations apply to probabilities in this space.
Let us consider a box Un containing r balls of n different colours:

k1, k2, . . . , kn (n ¬ r). The results of sampling the balls from the box
Un create a set Ω = {k1, k2, . . . , kn}. Let uj denote the probability of
sampling the ball of colour kj from the box Un (j ∈ {1, 2, . . . , n}). The
function p meeting the following conditions: p(k1)=u1>0, p(k2)=u2>0,
. . ., p(kn)=un>0 is the probability distribution on the set Ω, and therefo-

re the pair (Ω, p) is the probabilistic space. This is the probabilistic model
of sampling a ball from the box Un. Sampling a ball from the box Un we

call a trial and we denote it by du1,...,un or by dn if u1 = u2 = · · · = un =
1
n
.

The elements of the set Ω are called colours. The trial is defined une-

quivocally by the n-terms sequence (u1, u2, . . . , un) of rational numbers
from the interval (0, 1) sum of which is equal to 1, where uj = p(kj).
The result of m-time recurrence of the trial du1,...,un, i.e. any m-terms

arrangement of the set {k1, k2, . . . , kn}, is called the series of colours or
is called a flag and is denoted by α. The number m is called the length

of colours series and is denoted by |α|. If t < m, the sub-sequence t of
subsequent ending elements of colours series α is called its ending of the

length t.

We say that a flag α1 is contained in a flag α2, what is denoted by
α1 ⊂ α2, if α1 is a sub-sequence of the consecutive terms of the sequence
α2. If a flag α1 is not a sub-sequence of the consecutive terms of the

sequence α2, we say that the flag α1 is not contained in the flag α2, what
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6 AWAITING A SERIES

is denoted by α1 6⊂ α2.

Let α1, α2, . . . , αk be the fixed flags of |αj| = nj so that for any l, j ∈
{1, 2, . . . , k} and l 6= j the following condition is satisfied:

αl 6=αj ∧ [(|αl| 6= |αj|)⇒ (αl 6⊂ αj ∧ αj 6⊂ αl)].

The repetition of the trial du1,...,un for such a long time that:
— the results of n1 last trials create the flag α1,

— or the results of n2 last trials create the flag α2,
...
— or the results of nk last trials create the flag αk,

is called the awaiting one of k flags and is denoted by du1,...,unα1,...,αk
(or by

dnα1,...,αk, if u1 = u2 = · · · = un =
1
n
).

Any result of the experiment du1,...,unα1,...,αk
(as an elementary event) is such

a sequence ω, that:
— ω ∈ {1, 2, . . . , n}m, where m  min{n1, n2, . . . , nk} and
— either the ending of the length n1 of the sequence ω creates the flag

α1,
— or the ending of the length n2 of the sequence ω creates the flag α2,
...
— or the ending of the length nk of the sequence ω creates the flag αk,

and none other sub-sequence of the previous terms of the sequence ω
creates any flag of α1, α2, . . . , αk.

The set of all possible results of the experiment du1,...,unα1,...,αk
is denoted by

Ωu1,...,unα1,...,αk
.

Let Jj(ω) denotes the number of terms equal to kj in the sequence ω,

where j = 1, 2, . . . , n. We define the function p : Ωu1,...,unα1,...,αk
−→ R by the

formula:

pu1,...,unα1,...,αk
(ω) = u

J1(ω)
1 · u

J2(ω)
2 · · · · · uJn(ω)n .

The function pu1,...,unα1,...,αk
is the probability distribution on the set Ωu1,...,unα1,...,αk

.

The pair (Ωu1,...,unα1,...,αk
, pu1,...,unα1,...,αk

) is the probabilistic space , that we consider
as a probabilistic model of the sampling experiment du1,...,unα1,...,αk

.

Let us associate the below events with the sampling experiment du1,...,unα1,...,αk
:

Aj = {awaiting du1,...,unα1,...,αk
will result with the flag αj}, for j = 1, 2, . . . , n.
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6 AWAITING A SERIES

The event Aj we denote by {. . . αj} and its probability - by P (. . . αj).

Let us consider a box U3 containing three balls of colours: white, black

and green. There are only three possible results of sampling a ball from
this box:

b : the sampled ball will be white,
c : the sampled ball will be black,
z : the sampled ball will be green.

Sampling of a ball from the box U3 is the trial d3. Composed sampling
with return of the ball back to the box U3 until black ball will be sampled

two times running or until black ball will be sampled after the white one,
is the waiting for one of two flags: α1 = cc and α2 = bc or in other words:

it is the sampling experiment d3cc−bc.
Let us distinguish the following states in the experiment d3cc−bc: the

initial state s and the states c, b, cc, bc. The procedures described below

lead up to the stochastic graph of the sampling experiment d3cc−bc. Every
state of the experiment is interpreted as point of a plane and is called a

node of the graph. The graph node representing the state s is denoted by
start. The graph node representing a state j different from s is denoted

by j . Let pj→k denotes the probability that the experiment d
3
cc−bc would

be in state k after a given sampling, if after the previous sampling it was

in state j. If pj→k > 0 then we join the node j with the node k by an
oriented segment of straight or curved line. This segment is called the
edge of the graph and it is denoted by j → k. Close to each graph edge
we write down:
— the result of the trial, after which waiting it would be in the state k

if after the previous trial it was in the state j, if u1 = u2 = · · · = un =
1
n

or

— the number pj→k if j, k ∈ {1, 2, . . . , n} exist such that uj 6= uk.

If pj→j>0 then the edge j → j is called the loop. If pj→j = 1 then we
neglect the loop j → j and the node j is called the peripheral node.
The set of all peripheral nodes is called the periphery of the graph.
Any sequence of edges such that the beginning of the first one is the

node start, the end of the last edge is a peripheral node and in case of
any two other sequential edges the beginning of it is at the same time
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6 AWAITING A SERIES

the end of the next one (excluding the last edge) is called a trace. The

weight of the trace is the product of numbers associated to its sequential
edges.

Any sequence of edges such that the beginning of the first one is the
node j , the end of the last edge is a peripheral node and in case of any
two other sequential edges the beginning of it is at the same time the

end of the next one is called a cycle and we denote it by ck (k is an index
ordering the set of cycles). The number of edges creating the cycle ck is

called the cycle length and is denoted by r(ck). A loop is considered as
a cycle of length 1. The weight of the cycle is the product of numbers

associated to its edges. The nodes being the beginnings or endings of
the cycle edges are called the inner nodes of the cycle. If j, k1, . . . , kn are

the inner nodes of the cycle and pj→k1>0, pkn→j>0 and pkl→kl+1>0 for
l = 1, 2, . . . , n− 1, so such a cycle we denote by j→k1→. . .→kn→j. If a
sequence of trace edges creates a cycle, we say that this trace contains a

cycle. Otherwise we say that the trace does not contain a cycle.
Figure 5 presents the stochastic graph of the sampling experiment

d3cc−bc. (see [27] and [3]).
Let us consider the set Ω∗cc−bc of all traces on the stochastic graph of

the sampling experiment d3cc−bc. The function p
∗
cc−bc assigning the weight

to each trace from the set Ω∗cc−bc is the probabilistic distribution on the

set Ω∗cc−bc. The pair (Ω
∗
cc−bc, p

∗
cc−bc) is the probabilistic space called the

space induced by the stochastic graph.

s c cc

b

bc

c

z

z

c

b

c

b

z

b

Fig. 5

The probabilistic spaces (Ω∗cc−bc, p
∗
cc−bc) and (Ω

3
cc−bc, p

3
cc−bc) are isomor-

phic (see [24], page 32). Therefore we assume the probabilistic space
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6 AWAITING A SERIES

(Ω∗cc−bc, p
∗
cc−bc) as a probabilistic model of sampling experiment d

3
cc−bc.

The following deductions and calculations are carried out in such pro-
babilistic space.

In the probabilistic space (Ω∗cc−bc, p
∗
cc−bc) the event {. . . α} is a set of

all traces leading to the node α on the graph in the Figure 5, P (. . . α)
is the sum of all weights of traces leading to the node α (α ∈ {cc, bc}).
Let A be a set of traces leading to the node bc , that do not contain

any cycle. By w(A) we denote the weight of traces belonging to the set

A. Let B be a set of traces leading to the node bc , that contain at least
one cycle. By w(B) we denote the weight of traces belonging to the set

B. Here we have:

{. . . bc} = A ∪ B and A ∩B = ∅.

Because P (. . . bc) is the sum of weights of traces leading to the node

bc , therefore:

P (. . . bc) = P (A) + P (B) = w(A) + w(B). (6.0.1)

Let C denote a set of stochastic graph cycles of the sampling experi-
ment dcc−bc3 containing the starting node start. Here we have:

C = {s→ s, s→ b→ s, s→ c→ s, s→ c→ b→ s, s→ b→ b→ s,
s → b → b → b → s, . . . , s → c → b → b → s, s → c → b → b → b →
s, . . .}.

C is an infinite but countable set, therefore we can enumerate its

elements. Let C = {c1, c2, . . . , cj, . . .}. Let cn be any fixed cycle and let
w(cn) be its weight. Now let us consider a set Bcn made up of those
traces leading to the node bc , that have r(cn) of the beginning edges

creating the cycle cn. Let w(Bcn) denotes a sum of weights of all traces
belonging to the set Bcn. The set Bcn is equinumerous to the set {. . . bc}.
Let x = P (. . . bc). Therefore:

w(Bcn) = w(cn) · x. (6.0.2)

From
⋃

cn∈C

Bcn = B and ∀cj, ck ∈ C [Bcj ∩Bck = ∅], (6.0.3)
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it follows that

P (B) =
∑

cn∈C

w(Bcn). (6.0.4)

From the equations (6.0.1) and (6.0.4) it results that

P (. . . bc) = w(A) +
∑

cn∈C

w(Bcn).

If we take into consideration equation (6.0.2) in the above equation, then

we have

x = w(A) +
∑

cn∈C

w(cn) · x = w(A) + x ·
∑

cn∈C

w(cn).

So we get the equation

x = w(A) + x ·
∑

cn∈C

w(cn).

After some transformation we have

x =
w(A)

1−
∑

cn∈C

w(cn)
. (6.0.5)

Because
∑

cn∈C

w(cn) =
1
3 +

1
9 +

1
9 +

1
27 + (

1
27 +

1
81 + · · · ) + (

1
81 +

1
243 + · · · )

and w(A) = 19, therefore

P (. . . bc) =
1
9

1− (1
3
+ 1
9
+ 1
9
+ 1
27
+ ( 1
27
+ 1
81
+ · · · ) + ( 1

81
+ 1
243
+ · · · ))

.

Finally we get: P (. . . bc) = 23 and P (. . . cc) = 1− P (. . . bc) =
1
3.

The method presented in this work allows for probability calculation
of the events type {. . . αj} in case the graph of the sampling experiment
du1,...,unα1,...,αk

has cycles with node start being one of inner nodes. This method

enables us to find the probability of the event type {. . . αj} on the basis
of sampling experiment stochastic graph. Thereby this method may be

used in case of any sampling experiment being the Markov chain and
satisfying the above assumption.

The problem of drawing up a method of calculating the probability
of the events type {. . . αj} in case of any sampling experiment du1,...,unα1,...,αk

is
still open.
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